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EXECUTIVE SUMMARY

The purpose of this study is to characterize traffic inputs in support of the new Mechanistic-

Empirical Pavement Design Guide for the State of Michigan. These traffic characteristics include 

monthly adjustment factors (MAF), hourly distribution factors (HDF), vehicle class distributions 

(VCD), axle groups per vehicle (AGPV), and axle load distributions for different axle 

configurations. Weight and classification data were obtained from 41 Weigh-in-Motion (WIM) 

sites located throughout the State of Michigan to develop Level 1 (site-specific) traffic inputs. 

Cluster analyses were conducted to group sites with similar traffic patterns for developing Level 

2A inputs. Also, Permanent Traffic Recorder (PTR) locations with similar attributes (e.g., road 

class, development type etc.,) were grouped for developing Level 2B traffic inputs. Traffic data 

from all freeway and non-freeways sites were averaged to establish the statewide Level 3A 

inputs. Finally, traffic data from all the 41 WIM sites were averaged to develop the statewide 

Level 3B inputs. The effects of the developed hierarchical traffic inputs on the predicted 

performance of rigid and flexible pavements were investigated using the Pavement-ME. Based 

on statistical and practical significance of the life differences, appropriate levels were established 

for each traffic input. The hierarchical traffic inputs to be used in the Pavement-ME are listed 

below:

 Level 1 – Convert WIM and classification site-specific data to the Pavement-ME format 

using PrepME. 

 Level 2 – Utilize groups based on the road attributes with similar traffic characteristics. 

The group traffic characteristics should be averaged to create Level 2B traffic inputs. 

 Level 3 – Use average traffic characteristics from all PTR sites based on freeway and 

non-freeway to establish Level 3A inputs or use average traffic characteristics from all 

PTR sites to establish statewide Level 3B inputs.

VCD significantly impacts predicted rigid and flexible pavement performance. Thus, VCD 

groups (Level 2B) is suggested for use in flexible and rigid pavement design. MAF have 

negligible impact on predicted rigid and flexible pavement performance. Therefore, it is 

recommended that a statewide average (Level 3A) be used. HDF significantly impacts rigid 

pavement performance. Consequently, group average (Level 2B) HDFs should be utilized for 

rigid pavement design. AGPV had a negligible impact on predicted rigid and flexible pavement 

performance. Therefore, it is suggested that statewide averages (Level 3B) be used for this traffic 

input. Single axle load spectra have a significant effect on predicted flexible pavement 

performance for both cluster (2A) and group (2B) averages and produced comparable results. 

Also no significant difference was detected between Levels 2B and 3A. Therefore, it is 

recommended that statewide averages (Level 3A) be used for this traffic input. Tandem axle load 

significantly impacted rigid and flexible pavement performance. Therefore, group averages 

(Level 2B) are suggested for both rigid and flexible pavement designs. Tridem and quad axle 

load spectra do not have a significant impact on rigid and flexible pavement performance. 

Consequently, statewide average tridem and quad axle load spectra (Level 3A) can be used for 

this traffic input. The Pavement-ME defaults traffic inputs don’t accurately reflect the local 

traffic conditions in the state of Michigan. In general, statewide or cluster averages produced 

design lives that were closer to the site-specific values than the Pavement-ME defaults. 

Consequently, the Pavement-ME defaults are not recommended for use in the state of Michigan. 

Specific recommendations about the selection of traffic inputs for MDOT pavement designs, 
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frequency of updating road groups, and additional WIM locations in different regions are 

included in the report. The methodology for developing traffic inputs is straightforward and 

based on the data readily available to MDOT. As a result, it can be adopted by MDOT for future 

updates.
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CHAPTER 1 - INTRODUCTION

1.1 PROBLEM STATEMENT AND BACKGROUND

In the AASHTO 93 pavement design procedure, the truck traffic is converted to an 

equivalent number of 18-kip single-axle loads (ESALs) using the load equivalency factors 

(LEFs) developed based on Present Serviceability Index (PSI) concept. Several studies have 

found that the complex failure modes of pavement structures cannot be explained by this 

single value (1, 2). The mechanistic-empirical pavement design guide (Pavement-ME) 

addresses these limitations by incorporating mechanistic models to estimate stresses, strains, 

and deformations in pavement layers using site-specific climatic, material, and traffic 

characteristics (3). The Pavement-ME uses different performance parameters for each 

pavement type (e.g., fatigue cracking, rutting, and surface roughness in the case of flexible 

pavements) and does not consider PSI. Therefore, the use of ESALs to characterize traffic 

loadings is not compatible with the Pavement-ME. This new analysis and design approach 

requires specific types of traffic data to design new or rehabilitated pavement structures. 

These traffic inputs include:

 Annual average daily truck traffic (AADTT), 

 Vehicle class distribution (VCD), 

 Monthly adjustment factors by vehicle class (MAF), 

 Hourly truck volume distribution factors (HDF), 

 Number of axle groups per vehicle (AGPV), and 

 Axle load distributions by vehicle class and axle group.

The Pavement-ME addresses when detailed traffic data are not available or incomplete. 

Hierarchical input levels are used depending on the level of detail of the available traffic data 

(3-5). These input levels range from site-specific input values to “best-estimate” or default 

values and are classified as follows:

 Level 1 – There is a very good knowledge of past and future traffic characteristics. At 

this level, it is assumed that the past traffic volume and weight data have been 

collected along or near the roadway segment to be designed. 

 Level 2 – There is a modest knowledge of past and future traffic characteristics. At 

this level, only regional truck volume and weight data may be available for the 

roadway in question. 

 Level 3 – There is poor knowledge of past and future traffic characteristics. At this 

level, the designer will have little truck volume information. In this case, a statewide 

or some other default value must be used.

Traffic patterns in terms of truck volumes, vehicle class distributions, and axle loads vary 

considerably along various roads and locations even along the same route. The designer’s 

ability to assess the current and future traffic patterns is considered significant if WIM sites 

are present in the proximity to the design project. In the event, inputs are available only at a 
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regional or a network level (Level 2), the designer’s ability to evaluate current and future 

traffic patterns is reasonable. Finally, if the designer has to rely on default inputs based on 

national or state traffic patterns, the designer has insufficient knowledge (Level 3) of the 

current and future traffic characteristics. An improved understanding of the traffic inputs 

significance and their impact on performance predictions make the transition from a purely 

empirical to a mechanistic-empirical (ME) design procedure smoother. 

To address the above-mentioned needs, a study entitled “Characterization of Truck Traffic in 

Michigan for the New Mechanistic-Empirical Pavement Design Guide,” was completed in 

2009 (4). The study analyzed permanent traffic recorder (PTR) traffic volumes and WIM 

axle load data in Michigan for evaluating and characterizing traffic-related inputs for the 

Pavement-ME. The traffic characteristics included MAF, HDF, VCD, AGPV, and axle load 

distributions for different axle configurations. Axle weight and vehicle classification data 

were obtained from 44 WIM and classification stations located throughout the State of 

Michigan to develop Level 1 (site-specific) traffic inputs. Cluster analyses were conducted to 

group sites with similar characteristics to develop Level 2 (regional) inputs. Finally, data 

from all sites were averaged to establish the statewide Level 3 inputs. While the traffic 

characterization was based on data collected from 2005 to 2007, the same study 

recommended that traffic inputs, especially Level 2 clusters should be re-evaluated every five 

years because of the following reasons (4, 6):

a. Addition of new classification and WIM sites at different geographical locations or 

change in the status of the existing site (e.g., down- or up-grading from WIM to 

classification or vice versa). 

b. Significant changes in the land use in the vicinity of the existing WIM locations. 

c. Changes in the WIM technology for some locations. For example, if less accurate 

piezo-polymer sensors are replaced with more accurate piezo-quartz or bending plate 

sensors.

During the last eight (8) years, new traffic data were collected reflecting the recent economic 

growth, additional, and downgraded WIM sites. Consequently, the current traffic inputs 

should be re-evaluated and developed with the latest traffic data collected at all the PTR 

locations. Also, the following significant developments, related to the Pavement-ME analysis 

and design method in the State of Michigan during the last few years further necessitate the 

re-evaluation of the current traffic inputs:

 The performance models for the Pavement-ME design were recently calibrated to the 

local conditions in the State of Michigan (6). It will be appropriate to incorporate such 

changes in the re-evaluation of traffic inputs while conducting their sensitivity analyses to 

identify the most important ones. It should be noted that the global performance models 

were used in the previous traffic study. 

 TrafLoad software was used in the previous traffic study for extracting the traffic 

volumes (by class) and axle load data, and to ascertain the quality of the data in the 

previous study (4). TrafLoad has since lost endorsement nationally and is no longer 

supported.  However, recently the PrepME software was developed through the 

Transportation Pooled-Fund Study TPF-5(242), “Traffic and Data Preparation for 

AASHTO Pavement-ME Analysis and Design.” This software is capable of pre-
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processing, importing, checking the quality of raw WIM traffic data, and generating three 

levels of traffic data inputs with built-in clustering methods for the ME design. Therefore, 

there is a need to employ such tools to improve the quality of traffic data in the re-

evaluation of traffic inputs. 

 While the PrepME has improved capabilities as compared to TrafLoad software 

(discussed later), it has incorporated the built-in traffic clustering for Michigan based on 

the previous traffic study(4). However, if the cluster method or type is impacted by this 

research, the impacts to the PrepME software also needs to be identified, and 

modifications may be necessary. 

 Lastly, to reduce the frequency of future new traffic studies and streamline the process of 

generating ME traffic inputs, there is a need to re-evaluate the current methodology, 

provide enhancements, if found necessary. Also, there is a need for documenting a step-

by-step procedure that would allow MDOT to analyze future traffic data and create traffic 

clusters for ME use.

Based on the above discussion, it is very likely that the new traffic data, changes in the 

Pavement-ME software, and performance model calibrations will affect the existing clusters 

methodology and their characteristics. Thus, it was important to re-evaluate the traffic inputs 

for the ME analysis and design procedures in the State of Michigan.

1.2 RESEARCH OBJECTIVES 

The following are the specific objectives of the study:

1. Evaluate other states’ experiences with developing ME traffic inputs and traffic 

clustering methodologies, as well as recommendations from the new Traffic Monitoring 

Guide (TMG) (7) and the LTPP Pavement Loading User Guide (8, 9). 

2. Compare the 2009 cluster analysis methodology to other methodologies and/or literature 

from objective one. Determine the best-suited methodology for MDOT use.  Alternatives 

include the original 2009 cluster methodology, revised version of the 2009 cluster 

methodology, one of the methodologies from objective 1, or a new methodology 

altogether.  From these alternatives, provide a recommendation for MDOT use. 

3. Document the recommendations or changes to the cluster methodology and develop a 

tool or procedure for MDOT to evaluate and create the clusters for the specific traffic 

inputs to update traffic clusters in the future. This tool or procedure should lessen the 

need for future research and reduce demand for MDOT resources. 

4. Establish new and/or updated traffic clusters, descriptions, equations, and associated 

inputs. 

5. Review PrepME and identify possible errors or changes required. Document the findings 

and recommendations for PrepME enhancements. 

6. Develop a research report documenting findings, new developments, and future 

recommendations.
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1.3 RESEARCH PLAN 

To accomplish the above objectives, the research was conducted in eight (8) tasks briefly 

discussed below. 

Task 1: Literature Review

In this task, the team documented the state-of-the-practice for traffic clustering methods used 

in other states. In addition, the Federal Highway Administration (FHWA) recommendations 

for clustering traffic inputs among different locations (7, 9) were reviewed.

Task 2: Review of the Existing Practices 

The team reviewed the results and recommendations from the 2009 traffic study (4). The 

original methodology was assessed using findings from the literature review and experiences 

of other states with developing traffic inputs and clusters for the ME use. In evaluating the 

original MDOT clustering methodology, special attention was given to determine whether 

the existing cluster methodology still the “best” way for MDOT to cluster considering that 

there are other grouping techniques used by states (e.g., NCDOT or TTC clustering).

Task 3: Methodology for Clustering 

The Task 3 proceeded with RAP approval. In this task, if there is not a conclusive 

methodology and multiple methodologies that could be to recommend from Task 2, then the 

research team will use part of Task 3 to finalize their recommendation by evaluating and 

comparing the methodology(s) using ME design results. Otherwise, if an existing cluster 

methodology is not recommended, then the research team will develop a reproducible 

grouping methodology (as discussed in Task 1 above) which will be applicable for future 

cluster updates. 

Task 4: Generation of New Clusters for Level 2 Data

In this task, new clusters were generated for the traffic inputs based on the most appropriate 

grouping methodology identified in Tasks 2 and 3. These Level 2 traffic characteristics will 

provide common traffic inputs for those roadways without an appropriate PTR site. The 

detailed description is provided for each cluster along with the input values for 

AASHTOWare Pavement ME Design. The emphasis was given on documenting and 

explaining the procedure of clusters generation for each Level 2 input so that MDOT can 

generate new traffic cluster values independent of future research. 

Task 5: Significant Traffic Inputs 

Under this task, the team conducted a series of Pavement-ME sensitivity analyses. The 

purpose of the sensitivity analyses is to determine whether the accuracy of pavement designs 

using the AASHTOWare Pavement-ME software would improve from the use of multiple 

default values (supported by traffic clusters) for different traffic input parameters. The 

conclusions from these analyses will be used to identify traffic parameters that would require 

multiple default values. These default values will be developed based on traffic data 

clustering or other grouping techniques.
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Task 6: Evaluation of PrepME 

In this task, the research team will compare the cluster generated in Task 4 by the PrepME 

and the current cluster methodology. This comparison will be used to evaluate the current 

methodology in the PrepME. However, if it is determined that a new cluster methodology is 

more appropriate in Task 3, recommendations will be made to upgrade the PrepME software.   

If the 2009 clustering methodology is retained, an evaluation will determine if the software is 

currently applying the cluster methodology and correctly providing outputs as described in 

the 2009 research project. Finally, the team will determine if updates to PrepME are 

necessary due to any of the previous task findings. Consequently, explicit necessary 

corrections in the PrepME will be described for coding modifications to be made in the 

software. 

Task 7: Data Collection Recommendations

Based on the traffic data analysis and grouping, specific recommendations are made to fill the 

gaps in loading data for different regions in the State of Michigan.

Task 8: Final Report and Technology Transfer 

At the successful completion of the study, a final report will be submitted to MDOT 

containing all the deliverables. Also, if recommended by RAP, a technology transfer 

workshop will be developed and presented to MDOT engineers. 

1.4 OUTLINE OF REPORT

The report consists of the following six chapters: 

1. Introduction 

2. Literature review 

3. Development of traffic inputs for the Pavement-ME designs  

4. Traffic inputs significance for pavement design 

5. PrepME evaluation 

6. Conclusion and recommendations

Chapter 1 outlines the problem statement, the research objectives, and an outline of the final 

report. Chapter 2 documents the traffic characterization in the Pavement-ME and findings 

from the past studies at the national and state levels (Tasks 1 and 2). It also includes 

clustering techniques and the review of existing practices in Michigan. Chapter 3 covers the 

traffic data collection and processing in Michigan. This chapter also reviews the clustering 

techniques, and the procedures used for developing Level 2 inputs (Tasks 3 and 4). Chapter 4 

documents the impact of the developed Level 2 traffic inputs on pavement designs (Task 5). 

Also, the chapter includes the findings for appropriate traffic inputs levels (Level 2 or 3) in 

Michigan. Chapter 5 highlights intended modifications in the PrepME software. Chapter 6 

summarizes the conclusions and recommendations for the implementation of modified traffic 

inputs in Michigan.
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CHAPTER 2 - LITERATURE REVIEW

This chapter presents a review of literature and state-of-the-practice related to traffic 

inputs in the Pavement-ME. For ease of understanding, the review is further divided into 

the following topics: 

 Pavement-ME traffic inputs 

 National studies for traffic characterization 

 Traffic studies in other states 

 Review of existing practices in Michigan 

The traffic inputs needed for pavement analysis and design by the Pavement-ME are 

briefly discussed below.

2.1 PAVEMENT-ME TRAFFIC INPUTS

The Pavement-ME uses hierarchical input levels and provides flexibility to the designer 

in obtaining the design inputs based on the project importance. Three different input 

levels can be used in this hierarchical system ranging from site-specific input values to 

“best-estimate” or default values as classified below:

a) Level 1 – These inputs provide the highest level of accuracy because they are 

site/project specific and are measured directly, 

b) Level 2 – These inputs provide an intermediate level of accuracy and are used when 

Level 1 inputs are unavailable. Correlation or regression equations are used to 

estimate these inputs. 

c) Level 3 – These inputs are based on global or regional averages and provide the least 

amount of knowledge regarding the input parameters (Ideal for low volume roads).

The Pavement ME accepts an array of traffic inputs for use in design. Most of these 

inputs can be obtained through weigh-in-motion (WIM), automatic vehicle classification 

(AVC), and vehicle counts, etc. Table 2-1 summarizes each of these traffic inputs based 

on the available hierarchical levels (1). Each of these traffic inputs is briefly discussed 

below.

2.1.1 Directional distribution factor (DDF)

The traffic volume in the design direction expressed as a percentage of the overall 

volume of traffic in both directions. While a value of 50 percent is assumed, it usually 

depends on the commodities being transported as well as other regional/local patterns. 

The Pavement-ME assumes it to be constant over time and for vehicle classes. These 

values can be obtained from the AVCs or traffic count data measured over time.
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2.1.2 Lane distribution factor (LDF)

Trucks in the design lane expressed as a percentage of trucks in the design direction. For 

two-lane, two-way highways (one lane in one direction), LDF is equal to 1. For multiple 

lanes in one direction, it depends on the AADTT and other geometric and site-specific 

conditions. LDFs can be calculated from the AVCs or traffic count data measured over 

time. They are assumed constant with time and for all truck classes. 

Table 2-1 Traffic data required for the three Pavement ME input levels

Data Elements/Variables
Input Level

I II III

T
ru

ck
 T

ra
ff

ic
 &

 T
ir

e 
F

ac
to

rs

Directional 

distribution factor 

(DDF)

Site-specific 

WIM or AVC

Regional WIM or 

AVC

National WIM or 

AVC

Truck lane distribution 

factor (LDF)
Site-specific 

WIM or AVC

Regional WIM or 

AVC

National WIM or 

AVC

Axle/truck class Site-specific 

WIM or AVC

Regional WIM or 

AVC

National WIM or 

AVC

Axle and tire spacing

Hierarchical levels not applicable for these inputs

Tire pressure

Traffic growth

Vehicle operational 

speed

Lateral distribution 

(wheel wonder)

Monthly adjustment 

factor (MAF)
Site-specific 

WIM or AVC

Regional WIM or 

AVC

National WIM or 

AVC

Hourly distribution 

factor (HDF)
Site-specific 

WIM or AVC

Regional WIM or 

AVC

National WIM or 

AVC

c 
D

is
T

ru
ck

 T
ra

ff
ic
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is

tr
ib

u
ti

o
n
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n
d
 

V
o
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m
e

AADT or AADTT for 

the base year
Hierarchical levels not applicable for these inputs

Truck dist/spectra by 

truck class (VCD)
Site-specific 

WIM or AVC

Regional WIM or 

AVC

National WIM or 

AVC

Axle load dist/spectra 

by truck class and axle 

type (ALS)

Site-specific 

WIM or AVC

Regional WIM or 

AVC

National WIM or 

AVC

Truck traffic 

classification (TTC) 

group for design Hierarchical levels not applicable for these inputs

% of trucks
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2.1.3 Axles per truck class

Axle types per truck class represent the average number of axles for each truck class 

(class 4 to 13) for each axle type (single, tandem, tridem, and quad). The default number 

of axle types per truck class in the Pavement-ME were estimated by using the LTPP data. 

Local values can be different from the default, especially for unique truck class 

definitions not included in the Pavement-ME software. However, most studies have 

found the values to be reasonable for the standard truck class definitions (2). The local 

defaults can be obtained from the WIM sites.

2.1.4 Axle and tire spacing

The computed pavement responses are sensitive to both wheel locations and the 

interaction between the various wheels on a given axle. A set of axle spacing defaults 

were developed from LTPP WIM data.  Default axles spacing are limited to three axle 

types: tandem, tridem, and quads. Defaults for this input parameter can vary state-by-

state and depend on the truck classes (2). These values can be obtained from the truck 

manufactures specifications.

2.1.5 Tire pressure

Pavement responses are dependent on the tire dimensions and inflation pressures. Tire 

pressure is constant between all truck classes and does not change over with time. A 

default value of hot inflation pressure of 120 psi is used in the Pavement-ME. The 

reasonableness of this default value is based on a limited number of tire pressure studies 

conducted by different agencies (2). These values can be obtained from the tire 

manufacturer specifications. 

2.1.6 Traffic growth

Nationally, there is no default value, but a 2% to 4% linear growth is typically used. The 

value and function do not change over time for individual truck classes; values & growth 

function can change between truck classes. The site-specific values can be obtained from 

historical AVC or truck count data (2).

2.1.7 Operational speed

There is no default value, but the speed limit depends on functional class, terrain, the 

percentage of trucks, etc. The value is independent of truck classes. 

2.1.8 Lateral Wander

Lateral wander value is constant for all truck classes and does not change over time. A 

default value of 10 inches is recommended. Limited data are available from AASHO 

Road Test and a few limited studies (2). These values can be obtained from site surveys. 
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2.1.9 Monthly adjustment factor (MAF)

The monthly distribution factors convey the seasonal variations in AADTT by assigning 

a normalized weight factor to each month of the year. The default data in the Pavement-

ME assumes a seasonally independent value of ‘1’ for each of the 12 MAFs. 

Consequently, months with higher AADTT than others will receive a weight factor 

greater than 1 while months having lower AADTT will be assigned a weight factor less 

than 1. Other studies (1, 3-5) which evaluated MDFs, found different distributions. TMG 

suggests that two traffic patterns exist, consisting of a “flat urban” which is seasonally 

independent, and a “rural summer peak” in which the summer months experience higher 

AADTT than the winter (5). The MEPDG Design Guide states that pavements may be 

sensitive to MAFs and are influenced by factors such as adjacent land use, the location of 

industries in the area, and whether the site is rural or urban (1). 

2.1.10 Hourly distribution factor (HDF)

HDFs establish the percentage AADTT that travels on the roadway for each of the 24 

hours within a day.  As most can relate to the increase of cars on the roadway during rush 

hour, or peak hour, trucks also exhibit time-dependent behavior. Most hourly distribution 

factors exhibit a trend of having a peak period between the hours of 10:00 am and 5:00 

pm (6, 7). The TMG cites a study (5) in which trucking patterns were found to exhibit 

two types of patterns. The first one being an almost constant percentage of trucks each 

hour throughout the day and the other having a single-humped peak, typically during the 

morning. The constant percentage trucks throughout the day signified a greater presence 

of long-haul through trucks whereas the peaked distribution was found to be consistent 

with local trucks (5). The default HDFs in the Pavement-ME are shown in Figure 2-1 and 

the actual values by hours are shown in Table 2-2.

Table 2-2 The Pavement-ME default hourly distribution factors 

Hour HDF Hour HDF

0 2.3 12 5.9

1 2.3 13 5.9

2 2.3 14 5.9

3 2.3 15 5.9

4 2.3 16 4.6

5 2.3 17 4.6

6 2.3 18 4.6

7 5 19 4.6

8 5 20 3.1

9 5 21 3.1

10 5 22 3.1

11 5.9 23 3.1
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Figure 2-1 Default HDFs in the MEPDG

2.1.11 Vehicle class distribution (VCD)

The FHWA separates all traffic into 13 vehicle classes (classes 1 through 13) as shown in 

Table 2-3. VCD represents the percentage of each truck class (classes 4 through 13) 

within the AADTT for the base year. The sum of the percent AADTT of all truck classes 

should be 100. The MEPDG manual (1) reveals that VC 5 and VC 9 vehicles dominate 

the truck traffic distribution, with varying percentages of other truck classes. Vehicle 

class distributions is estimated from short duration counts such as WIM and AVC sites, 

urban traffic centers, toll facilities, etc. 

2.1.12 Axle load spectra (ALS)

The Pavement-ME establishes an axle load spectra for each axle configuration within 

each vehicle class.  The percentage of axles is distributed into the following load bins for 

each axle configuration and vehicle class.

 Single: 3000-41000, in 1000 lb increments (39 bins) 

 Tandem: 6000-82000 in 2000 lb increments (39 bins) 

 Tridem: 12000-102000 in 3000 lb increments (31 bins) 

 Quad: 12000-102000 in 3000 lb increments (31 bins)

ALS are dependent on seasons but independent with time (the values do not change over 

the analysis period; year-to-year). Many sites located on the interstate and primary 

roadways have axle load spectra that are not likely to be dependent on season. 
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Table 2-3 FHWA Vehicle Classes

FHWA 

Vehicle Description Example Vehicle Configuration

Class

4 Two-Axle Buses

Two-Axle, Six-Tire, 
5

Single-Unit Trucks

Three-Axle Single-Unit 
6

Trucks

Four or More Axle 
7

Single-Unit Trucks

Four or Fewer Axle 
8

Single-Trailer Trucks

Five-Axle Single-Trailer 
9

Trucks

Six or More Axle 
10

Single-Trailer Trucks

Five or fewer Axle 
11

Multi-Trailer Trucks

Six-Axle Multi-Trailer 
12

Trucks

Seven or More Axle 
13

Multi-Trailer Trucks

NOTE: In reporting information on trucks the following criteria should be used: 

 Truck tractor units traveling without a trailer will be considered single-unit trucks. 

 A truck tractor unit pulling other such units in a "saddle mount" configuration will be considered one 

single-unit truck and will be defined only by the axles on the pulling unit. 

 Vehicles are defined by the number of axles in contact with the road. Therefore, "floating" axles are 

counted only when in the down position. 

 The term "trailer" includes both semi- and full trailers.
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2.2 A REVIEW OF PREVIOUS STUDIES

Several research studies in the recent times focused on the following areas: 

 Analyzing Weigh-in-Motion (WIM), Automated Vehicle Classifier (AVC), and 

automated traffic recorder (ATR) data with appropriate quality checks to develop 

traffic inputs for the Pavement-ME. 

 Evaluating the effect of traffic inputs on the Pavement-ME distress predictions 

and final pavement design thickness (sensitivity analysis). 

 Applying statistical models and techniques such as cluster analysis in identifying 

homogenous traffic patterns. 

 Reviewing current traffic collection infrastructure and practices to meet the traffic 

input requirements of the Pavement-ME.

The research team has found various guidelines, statistical models, and techniques used 

to obtain the Levels 2 and 3 inputs for use in the Pavement-ME. Therefore, a review of 

these studies has been conducted to study the application of different approaches in 

traffic characterization. A summary of the review is presented below.

2.2.1 National Studies

Results of the research studies related to loading inputs (ALS) for use in the ME design 

procedure are discussed in this section.

2.2.1.1 NCHRP 1-37A Study

The NCHRP 1-37A final report provides guidelines for truck traffic data collection for 

both axle weights and truck volumes (8). These guidelines are based on the allowable 

error and permissible bias for each data element in establishing the normalized truck 

volume distribution and normalized axle load spectra (NALS). Truck traffic classification 

(TTC) groups were developed based on the analysis of national WIM and AVC data 

collected through the LTPP program. These TTC groups are used to characterize truck 

volume by vehicle class rather than by vehicle weight. Each TTC group represents a 

traffic stream with unique truck traffic characteristics (see Table 2-4). For example, TTC 

1 describes a traffic stream that is heavily populated with single-trailer trucks and TTC 17 

contains more buses. A standardized set of TTC groups that best describes the traffic 

stream for the different road functional classes is presented in Table 2-5. Table 2-6 

presents the recommended data collection frequency for determining the TTC groups.
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Table 2-4 NCHRP 1-37A Truck traffic classification (TTC) groups (8)

TTC 

group
TTC description

Vehicle/Truck class distribution (%)

4 5 6 7 8 9 10 11 12 13

1 Major single-trailer truck route (Type I) 1.3 8.5 2.8 0.3 7.6 74.0 1.2 3.4 0.6 0.3

2 Major single-trailer truck route (Type II) 2.4 14.1 4.5 0.7 7.9 66.3 1.4 2.2 0.3 0.2

3
Major single- and multi- trailer 

truck route (Type I)
0.9 11.6 3.6 0.2 6.7 62.0 4.8 2.6 1.4 6.2

4
Major single-trailer truck route 

(Type III)
2.4 22.7 5.7 1.4 8.1 55.5 1.7 2.2 0.2 0.4

5
Major single- and multi- trailer 

truck route (Type II)
0.9 14.2 3.5 0.6 6.9 54.0 5.0 2.7 1.2 11.0

6
Intermediate light and single-trailer 

truck route (I)
2.8 31.0 7.3 0.8 9.3 44.8 2.3 1.0 0.4 0.3

7 Major mixed truck route (Type I) 1.0 23.8 4.2 0.5 10.2 42.2 5.8 2.6 1.3 8.4

8 Major multi-trailer truck route (Type I) 1.7 19.3 4.6 0.9 6.7 44.8 6.0 2.6 1.6 11.8

9
Intermediate light and single-trailer 

truck route (II)
3.3 34.0 11.7 1.6 9.9 36.2 1.0 1.8 0.2 0.3

10 Major mixed truck route (Type II) 0.8 30.8 6.9 0.1 7.8 37.5 3.7 1.2 4.5 6.7

11
Major multi-trailer truck route 

(Type II)
1.8 24.6 7.6 0.5 5.0 31.3 9.8 0.8 3.3 15.3

12
Intermediate light and single-trailer 

truck route (III)
3.9 40.8 11.7 1.5 12.2 25.0 2.7 0.6 0.3 1.3

13 Major mixed truck route (Type III) 0.8 33.6 6.2 0.1 7.9 26.0 10.5 1.4 3.2 10.3

14 Major light truck route (Type I) 2.9 56.9 10.4 3.7 9.2 15.3 0.6 0.3 0.4 0.3

15 Major light truck route (Type II) 1.8 56.5 8.5 1.8 6.2 14.1 5.4 0.0 0.0 5.7

16 Major light and multi-trailer truck route 1.3 48.4 10.8 1.9 6.7 13.4 4.3 0.5 0.1 12.6

17 Major bus route 36.2 14.6 13.4 0.5 14.6 17.8 0.5 0.8 0.1 1.5

Table 2-5 NCHRP 1-37A guide for selecting appropriate TTC groups (8)

Highway functional classification descriptions Applicable TTC group number

Principal Arterials – Interstate and Defense 

Routes
1,2,3,4,5,8,11,13

Principal Arterials – Intrastate Routes, including 

Freeways and Expressways
1,2,3,4,6,7,8,9,10,11,12,14,16

Minor Arterials 4,6,8,9,10,11,12,15,16,17

Major Collectors 6,9,12,14,15,17

Minor Collectors 9,12,14,17

Local Routes and Streets 9,12,14,17
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Table 2-6 Minimum number of data collection days per season to estimate TTC (1)

Expected error 

(+ %)

Confidence level (%)

80 90 95 97.5 99

20 1 1 1 2 2

10 1 2 3 5 6

5 3 8 12 17 24

2 20 45 74 105 148

1 78 180 295 — —

For axle loading inputs, only one set of ALS for each truck class was determined and 

included in the software as none of the ALS for the different roadway functional classes 

were found to be significantly different in terms of the predicted distress. One reason for 

the insignificance is that most of the WIM sites were located along rural interstates and/or 

primary arterials where local truck traffic may have a lesser impact on the ALS. Table 2-

7 provides the frequency of truck weight data collection recommended for establishing 

the NALS (1, 2).

Table 2-7 Minimum number of data collection days per season to estimate ALS (1)

Expected error 

(+ %)

Confidence level (%)

80 90 95 97.5 99

20 1 1 1 1 1

10 1 1 2 2 3

5 2 3 5 7 10

2 8 19 30 43 61

1 32 74 122 172 242

2.2.1.2 Federal Traffic Monitoring Guidelines

The 2016 FHWA Traffic Monitoring Guide (TMG) (5) provides recommendations and 

best practices for highway traffic monitoring, including monitoring of truck loading. The 

TMG recommends a relatively small truck weight program, primarily due to the cost of 

weight data collection and the limitations of available equipment. The following 

recommendations can be inferred from the TMG:

 Collecting a representative sample of traffic loading data using truck weight roadway 

groups 

 Making sure that the roadway groups should have similar vehicle types and similar 

truck axle weight distributions for all roads within that group. 

 Collecting weight data by using permanently installed WIM sites or at least 

permanently installed in-pavement WIM sensors to achieve accurate data. 

 Calibrating WIM equipment against systematic errors is critical to WIM data 

collection. 

 Obtaining data such that it accounts for the day-of-week and seasonal changes in 

vehicle weights that occur within each group.
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The truck traffic may vary significantly within a state depending on the road and land 

use. The roadway system could be divided into roadway groups such that each road 

within a group experiences similar truck-loading patterns. These groups may be defined 

based on different methods, such as statistical analysis, a professional judgment based on 

local knowledge of loading characteristics, or a combination of both. Characteristics of 

the freight moved on the roads, including the type of commodities carried, the vehicles 

used, and the freight movement could be used for dividing the roadway system (5). The 

developed roadway groups should be simple enough and logical in discriminating roads 

that are likely to have different traffic loading patterns.

The developed roadway groups should be periodically reviewed as more traffic data 

within the state becomes available over time. The accuracy of these road groups depends 

on the accuracy and precision of the collected weight data. Also, the more data collection 

sites within a roadway groups, the higher will be the confidence level in the traffic inputs 

generated. A minimum of six WIM sites with permanently installed WIM sensors per 

truck weight group is recommended (5).

2.2.1.3 NCHRP 1-39 Guidelines

The NCHRP 1-39 report (9) contains guidelines for collecting traffic data to be used in 

mechanistic-empirical pavement design. Three levels of axle-load distribution (or “load 

spectra”) data are needed for the Pavement-ME: (a) site-specific, (b) TWRG, and (c) 

statewide averages. Site-specific data requires an adequately calibrated WIM system and 

near the roadway segment to be constructed or rehabilitated. If the WIM system is 

unavailable or not properly calibrated (according to the ASTM requirements), Level 2 

design inputs should be used to characterize traffic for design. 

TWRG axle-loading data are needed because most States do not have sufficient site-

specific WIM data for the majority of pavements they design each year. The TWRGs are 

likely to be state-specific, but multiple states can create “regional” axle load distribution 

values if these States have similar truck weight laws and enforcement programs. The 

intent is to group roads by their trucking characteristics so that the load spectra on all the 

roads in a group are similar. The challenge is to determine the roads (and directions of 

travel, in some cases) to choose for grouping. The grouping process requires analysis of a 

State’s available weight data and trucking patterns, possibly for different truck classes, 

and it results in the creation of appropriate TWRGs. Roadways with similar truck classes 

may carry different loads. For example, a single road could have loaded trucks in one 

direction and unloaded trucks in the other direction resulting in two TWRGs needed to 

characterize axle load distributions for that road.

Also, it was reported that the simple averages of the load distribution at all sites in a 

TWRG produced better results than weighted averages. It is attributed to a significant 

positive correlation between the volume of trucks in a particular vehicle class operating at 

a site and the average loads of these trucks. Because of this correlation, weighted 

averages produced higher estimates of average pavement load per vehicle than simple 

averages.
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It was also recommended that the statewide axle-load distribution should be used only 

when a highway agency has little knowledge of the loads that trucks will carry on the 

roadway being designed. This means that the agency has little confidence in its ability to 

predict the TWRG for the pavement section. Statewide load distributions are obtained 

(for each vehicle class) by combining the data collected from all WIM sites in a State. 

These distributions then serve to represent “average conditions” that can be used 

whenever better data is unavailable (2, 9).

2.2.1.4 LTPP Traffic Pooled-Fund Study 

The LTPP TPF-5(004) study has generated high-quality traffic loading information for 26 

LTPP Special Pavement Study (SPS) sites located in 23 different states representing 

moderate and high volume rural principal arterial interstate and non-interstate highways. 

LTPP defines research-quality traffic data as at least 210 days of data (in a year) collected 

at a calibrated WIM site conforming to the LTPP’s WIM performance requirements 

(tolerance defined as the percent error computed using 95% confidence limit of error) for 

single axles, axle groups, gross vehicle weight, vehicle length (bumper-to-bumper), 

vehicle speed, and axle spacing, as detailed in Table 2-8 (10). 

Table 2-8 LTPP WIM system performance requirements

Pooled-fund site factors 95 Percent confidence limit of error 

(tolerance for % error)

Loaded Single Axles +/-20 percent 

Loaded Axle Groups +/-15 percent 

Gross Vehicle Weights +/-10 percent 

Vehicle Length greater of +/-1.5 ft or +/-3 percent 

Vehicle Speed +/-1 mph 

Axle Spacing Length +/- 0.5 ft [150 mm]

The WIM data from the LTPP TPF 5(004) study were used to develop a two-tier ALS 

default in a new FHWA study (10):

 Tier 1 Global defaults representing average loading 

 Tier 2 Defaults representing different loading patterns (clusters) 

The methodology for developing LTPP Tier 1 NALS defaults is very similar to the 

process used to create the original NCHRP 1-37A defaults. However, data used to 

develop LTPP defaults are of higher quality but of lesser quantity (fewer WIM sites) than 

the original NCHRP 1-37A defaults.

Tier 2 defaults were developed based on hierarchical clustering of axle load data from 

multiple sites. Sites that had similar loading conditions were clustered together. Clusters 

were differentiated based on the differences that load spectra representing each cluster are 

likely to have on the Pavement-ME outcomes. The Pavement-ME thickness and design 

life predictions were used to determine what constitutes practical significance in 

pavement design outcomes to different load spectra clusters. As a result, clustering of 
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load spectra was weighted greatly by the presence of heavy loads. Several alternative 

default axle loading categories were identified for each vehicle class and axle group and 

default normalized axle load spectra (NALS) were developed to represent these loading 

patterns. The definitions of different default traffic loading clusters for ALS and their 

attributes are provided in Table 2-9 (2, 10).

Table 2-9 Summary of NALS categories by weight for different axle group types

Axle loading 

category by 

weight

Average 

RPPIF per 

cluster

Percent of 

single axles 

>= 15 kip

Percent of 

tandem axles 

>=26 kip

Percent of 

tridem axles 

>=39 kip

Percent of 

quad axles 

>=54 kip

Very Light (VL) <0.05 <3% 0% n/a n/a

Light (L) 0.05-0.15 <10% <10% n/a n/a

Moderate (M) 0.15-0.30 10-30% 10-30% n/a n/a

Heavy (H)* 0.30-0.50 >30% 30-50% <50% <30%

Very Heavy (VH) >0.50 n/a >50% >50% >30%

*For roads with high percentage of Class 9 vehicles, “Heavy” loading category was further subdivided to 

“Heavy 1” and “Heavy 2” based on observed high sensitivity of MEPDG outcomes to Class 9 tandem axle 

load spectra. “Heavy 1” category has RPPIF of 0.3-0.4 and percentage of heavy tandem axles between 30 

and 40 percent. “Heavy 2” category has RPPIF of 0.4-0.5 and percentage of heavy tandem axles between 40 

and 50 percent. RPPIF = Relative Pavement Performance Impact Factor; summary statistic developed for the 

study to identify and group load spectra that likely to have similar effect on pavement design outcomes use 

global MEPDG pavement performance prediction models.

In addition to the defaults, guidelines for State highway agencies were developed 

showing how to apply the methodology from the LTPP study to develop State-specific 

traffic loading defaults for the pavement design use.

The newly computed ALS defaults had fewer very light and heavy loads compared to the 

original defaults. This is likely due to the fact that the new defaults were collected with 

more consistently calibrated and precise WIM equipment than the data set used for the 

development of the original NALS defaults under the NCHRP 1-37A project. The better 

calibration of the WIM scales used to develop the new defaults could result in fewer very 

light loads (caused by under calibrated scales observing light loads) and fewer very heavy 

loads (caused by over calibrated scales observing heavy loads) are observed in the new 

default database. Assuming that the new LTPP defaults are more accurate, a conclusion 

could be drawn that pavement designs using the new defaults will be thinner than the 

designs using the original Pavement-ME defaults. However, from a practical perspective, 

the difference in the design thickness was significant only for a limited number of 

pavement scenarios tested (2). 

2.2.2 Other States

Many other state highway agencies (SHAs) have completed studies to determine the 

truck traffic weight and volume defaults to be used with the Pavement-ME. Some of 

these agencies include Arizona, Alabama, Arkansas, Colorado, Georgia, Idaho, Missouri, 

Montana, North Carolina, and Wyoming. Most studies have found that the axle load 

spectra deviate from the global default values currently included in the Pavement-ME
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software, especially for local and secondary routes. Thus, the axle load spectra or 

distributions can depend on the roadway use and/or geographical location. 

2.2.2.1 Arizona

A research study (11) sponsored by the Arizona Department of Transportation (ADOT) 

addressed the collection, preparation, and use of traffic data required for pavement 

design. Procedures to collect Level 1 traffic inputs were documented. Levels 2 and 3 

recommended inputs and defaults are provided based on the best historical data available 

to date using multivariate hierarchical statistical cluster analyses (using correlation 

coefficient (R2) method)(11). Although determining the optimum number of clusters 

within a dataset is a subjective decision, five diagnostic statistics were used for 

determining the optimum number of clusters. Those were (a) Cubic clustering criterion 

(CCC), (b) Cumulative and partial squared multiple correlations (R2), (c) Eigenvalue and 

associated variance (VAR), (d) Pseudo F (PSF) and (e) Pseudo t2
 (PST2). Based on the 

clustering and sensitivity analyses, two clusters for vehicle class distribution, two clusters 

for hourly distribution factors, one cluster for monthly distribution factor, three clusters 

for axle load distribution, and one cluster for axles per truck were recommended. The 

selection criteria of clusters are based on the highway functional classes (11). 

2.2.2.2 Alabama

A study (12) was conducted in the State of Alabama to develop traffic data clusters for 

use as inputs in the Pavement-ME. While the Pavement-ME requires only three input 

levels, the second level inputs were further split into two subcategories in this study. The 

levels considered were: (a) Level 1 – Site and direction specific data, (b) Level 2A – 

Cluster or WIM group data, (c) Level 2B – Statewide data and (d) Level 3 – Nationwide 

data. Thirteen types of traffic inputs were identified based on the Michigan study (13) 

and clusters were developed for those inputs. Those 13 inputs are: 1 HDF, 1 VCD, 4 

AGPV  (single, tandem, tridem and quad), 3 MDF (single unit, tractor trailer and multi-

trailer) and 4 ALS (single, tandem, tridem and quad).

It was noted in the study that hierarchical cluster analysis was the most popular clustering 

technique. Citing the disadvantages of using Euclidean distance, which is state of the 

practice, the researchers used Pearson’s correlation coefficient (𝑟𝑗k) for clustering 

purposes. Also, a correlation-based clustering that combines Pearson’s correlation 

distance measure (to evaluate similarity) with unweighted pair group method using 

arithmetic averages (UPGMA) (to cluster WIM sites) was developed in this study. Once 

the clusters were developed, sensitivity analyses were conducted to quantify the 

differences in required pavement thickness between different traffic inputs levels. 

Geographical patterns were defined to assist in selecting the appropriate clusters for new 

pavement design (12).

2.2.2.3 Arkansas

Another study conducted in the State of Arkansas analyzed WIM data by using cluster 

analysis methodologies to identify groups of WIM sites with similar traffic characteristics 
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based on the required traffic attributes (14). The research team normalized the traffic data 

attributes on an annual basis. Ten WIM sites located in Arkansas which passed the truck 

weigh data quality check process have been used in the analyses. Ward’s minimum-

variance method was used. A dissimilarity coefficient matrix based on the Euclidean 

distance for each pair of objects was computed for the 10 WIM sites. Three clusters were 

identified when distribution of gross weight of Class 9 truck was used as the attribute. 

Two other clustering approaches, K-mean and fuzzy cluster analyses were also applied to 

the data for comparison purposes. The classifications of clusters had little differences 

among these three approaches used indicating the patterns of the traffic stream were 

consistent regardless of cluster methodologies. The clusters for vehicle class distribution 

factors (VCDs), hourly distribution factors (HDFs), and monthly adjustment factors 

(MAFs) were identified by using the K-means clustering procedure. Three clusters for 

vehicle class distributions and monthly adjustment factors, and two clusters for hourly 

distribution factors were observed. Grouping based on a combination of known 

geographic, industrial, agricultural, and commercial patterns was done using the Fisher’s 

Exact Test (15) for developing the loading groups.  Categorical statistical models (multi-

category logit [ML] models) were developed to assign a new pavement design project to 

a cluster (14). 

2.2.2.4 Colorado

A study was conducted in Colorado with the main objectives being (1) determine how 

representative available traffic data are for pavement design in Colorado using the 

Pavement-ME, (2) detect natural groupings or clusters within the available traffic data, 

and (3) develop defaults for Levels 2 and 3 traffic inputs for pavement design (16). 

Statistical analysis to determine natural clusters within the traffic and the optimum 

number of clusters was conducted. Natural clusters within the large Colorado traffic data 

assembled were determined using statistical multivariate hierarchical cluster analysis 

similar to the analysis done in the State of Arizona (11). Clusters were formed for vehicle 

class distribution, hourly truck volume distribution, monthly adjustment factors, axles per 

truck class factors, axle load distribution.

2.2.2.5 North Carolina

North Carolina Department of Transportation (NCDOT) sponsored a study for the 

implementation of the Pavement-ME in the State of North Carolina (17). The study 

included developing the need for resources, procedures, and guidelines for NCDOT 

traffic data needed for the Pavement-ME. Clustering analyses was performed to develop 

the required traffic inputs. Initial clustering analysis of 42 WIM sites based on VCD for 

different months resulted in three major clusters or factor groups. Each factor group 

includes WIM sites that tend to remain in same cluster over the year (from January to 

December). 

Even though the cluster analyses led to different clusters, the pavement performance was 

found to be insensitive to hourly distribution factors and monthly adjustment factors. 

Hence state wide averages were recommended for use. Multi-dimensional clustering was 

used to determine the Level 2 inputs for axle load spectra. Multi-dimensional clustering



20

tests the similarity among WIM data based on several attributes, where one dimensional 

clustering does it based on one attribute at a time. One dimensional analysis provides 

clusters which are distinct by one axle type, but they are difficult to interpret or relate to a 

definite traffic pattern. Therefore, the cluster representing single axles may not contain 

the characteristics of roadways where tandem axles are predominant. Moreover, Class 5 

(two single axles) and Class 9 (one single axle and two tandem axles) are the 

predominant truck classes in North Carolina. Class 5 and 9 represented single and tandem 

axles better, respectively (18). Thus, the implementation of multi-dimensional (two-

dimensional clustering using Ward’s method) clustering may improve the results, 

because it considers the relationship of multiple attributes simultaneously and processes 

well-explained clusters. For new pavement projects, 48-hour site specific classification 

counts were used to derive the traffic parameters (17). 

2.2.2.6 New York

A study was performed to characterize the traffic inputs (VCD, MDF, HDF, AGPV, and 

axle load spectra) for the State of New York. Data were obtained from vehicle 

classification and WIM sites in New York during years 2007 to 2011. Cluster analysis 

was performed only for VCD, MDF, and HDF due to the unavailability of data for a 

sufficient number of WIM sites. The MEPDG analyses were executed to study the effect 

on predicted pavement performance using site-specific, regional (clusters), statewide 

average and the MEPDG default values on predicted performance measures for 

conventional new flexible and rigid pavement structures. Ward’s method of cluster 

analysis was adopted. Semi-partial R-squared (SPR) values were used to determine the 

number of clusters to be selected for further analyses. 

Four clusters were formed for the vehicle classification distribution (VCD). Those are 

differentiated based on proportions of Class 5 and Class 9 vehicles. The direction of 

travel has little impact on the VCD. The results of cluster analysis are consistent for all 

the years. Multi-dimensional clustering was adopted for monthly distribution factors 

considering Class 5 and 9 vehicles simultaneously. Four clusters were formed for 2007, 

2008 and 2010. However, three and five clusters were formed for 2009 and 2010 

respectively. Four clusters are found for hourly distribution factors for each of the years. 

The results of cluster analysis are almost consistent over the years. HDF does not show 

any impact on the performances of pavement. The study recommends statewide average 

values for VCD, MDF, AGPV, and ALS.

2.2.2.7 Georgia

A study was conducted to make recommendations for establishing Georgia Department 

of Transportation (GDOT) traffic load spectra program and the WIM data collection plan 

to support the implementation of the Pavement-ME analysis and design (2). There are 

very few permanent WIM sites in the State of Georgia, and the data obtained from the 

portable WIM sites were considered inadequate as a Level 1 input. It was mainly due to 

the limitation of equipment accuracy and challenges with field calibration of the portable 

WIM system. GDOT’s vehicle classification data from automated vehicle classification 

(AVC) sites were also reviewed and categorized by the MEPDG truck traffic 
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classification (TTC) groups by the researchers. Not all default MEPDG TTCs were 

observed in Georgia. The study recommended that NALS defaults developed as part of 

the FHWA study (10) be used until more Georgia permanent WIM data become available 

to compute Georgia-specific loading defaults. This recommendation was based on 

similarities in loading characteristics and the Pavement-ME outcomes using Georgia 

WIM data and LTPP defaults. For new alignments, it was recommended that the new 

NALS be based on the type of traffic loading condition expected based on aggregated 

road functional classes, GA freight route designation, and expected AADTT and percent 

of class 9 vehicles A decision tree based on these factors was developed to assist the 

pavement designers.   

2.2.2.8 Idaho

Site-specific traffic inputs were developed based on the analyses of traffic data from 12 

out of 25 WIM sites in Idaho as part of the States’ MEPDG implementation effort. 

Statewide axle load spectra and an average number of axles per truck were established. 

The significance of the MEPDG predicted performance in relation to axle load spectra, 

vehicle class distribution, monthly adjustment factors and an average number of axle per 

truck was also investigated. The results showed an average directional distribution, and 

lane distribution factors agree quite well with the MEPDG recommended default values. 

Also, in general, Class 9 followed by Class 5 trucks represented the majority of the trucks 

traveling on Idaho roads. The vehicle class distribution factors at 5 out of 12 investigated 

WIM sites did not match any of the MEPDG recommended TTC groups. The developed 

MAF ranged between 0 and 4 indicating that truck volumes vary from month to month. 

The peak locations of the developed statewide and the MEPDG default ALS were fairly 

similar for the majority of the truck classes and axle types. However, the percentages of 

axles within these peaks were different, especially for the tridem and quad axles(19). The 

number of single, tandem and tridem axles per truck for all truck classes based on Idaho 

data was found quite similar to the MEPDG default values. Idaho data showed few 

percentages of quad axles for truck classes 7, 10, 11, and 13 compared to the MEPDG 

default values which are all zero. 

The developed statewide axle load spectra yielded significantly higher longitudinal and 

alligator cracking compared to the MEPDG default spectra. No significant differences 

were observed for predicted AC rutting, total rutting, and IRI based on statewide and the 

MEPDG default spectra. High prediction errors were found for longitudinal cracking 

when statewide/national (Level 3) axle load spectra, vehicle class distribution, or monthly 

adjustment factors were used instead of site-specific (Level 1) data. Large prediction 

errors in alligator cracking were only found when the statewide default axle load spectra 

were used compared to site-specific spectra. Moderate errors were found when the 

MEPDG typical default monthly adjustment factors or vehicle class distribution were 

used instead of the site-specific values. The input level of the axle load spectra, monthly 

adjustment factors, vehicle class distribution, and number of axles per truck had very low 

impact on predicted AC rutting and negligible impact on total rutting and IRI. The input 

level of the number of axles per truck had negligible influence on the MEPDG predicted 

performance. (19)
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2.3 REVIEW OF EXISTING PRACTICES IN MICHIGAN

The final report “Characterization of Truck Traffic in Michigan for the New Mechanistic-

Empirical Pavement Design Guide” was reviewed to determine if the clustering 

methodology used in the 2009 study is still the “best” way for MDOT to develop Levels 

2 and 3 inputs for the Pavement-ME use. Another goal of the review was to determine if 

the current methodology could be improved or simplified to address the needs and 

constraints faced by MDOT traffic data personnel. In making this determination, 

techniques used by other SHAs to accomplish similar task were considered. 

Several statistical techniques were used in the 2009 study to develop and test traffic 

clusters and default values. Also, the MEPDG sensitivity analyses were conducted to test 

the clusters and recommendations on the use of Level 2 (cluster-based) and Level 3 

(statewide) defaults were included. Implementation of this approach could be further 

improved in several areas, as described below.

2.3.1 Potential Areas of Improvement in the Current Practices

Several areas were identified during the review that would benefit from revisions and 

would lead to the development of the improved road groupings or clusters for the 

determining more representative Level 2 and Level 3 traffic defaults. The following 

potential improvements are proposed in the current methodology:

1. Level 3 defaults represent statewide traffic conditions, as such the data from traffic 

sites used to develop these defaults should be representative of all the State roads that 

may be designed using the Pavement-ME. Having sample skewed towards a specific 

road type (that has a disproportionately higher representation in the sample) may bias 

the statewide defaults. Traffic characteristics on interstate roads and high heavy truck 

volume primary arterial non-interstate roads typically differ from those observed on 

non-interstate low heavy truck volume roads. It may be beneficial to have two 

statewide defaults: one for interstate and high heavy truck volume roads (i.e., 

designated state freight routes) and another for all other roads. Such strategy would 

also reduce bias towards a particular road type and account for potential future 

changes in traffic characteristics or pavement design requirements for these types of 

roads. 

2. In the 2009 study, the term TTC was used both to define cluster groups and as a name 

of vehicle class distribution input. While TTC is an appropriate name for road clusters 

that show specific truck traffic characteristics (hence, TTC term), the term ‘VCD’ 

could be used to refer to the Pavement-ME vehicle class distribution input. 

3. The three VCD clusters developed were not clearly defined in terms of available non-

vehicle classification parameters such as road class (i.e., freeway and non-freeway). 

This poses some challenges for assigning a particular cluster default to a site without 

site-specific data. 

4. An alternative approach to clustering could be used to study similarities in VCD and 

AADTT levels within road functional classes and then develop clusters based on 

aggregated functional classes, using AADTT as a secondary qualifier. Clusters or 

groups based on this approach would allow easy assignment of TTC defaults, as well
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as easy updates of Level 2 defaults in the future. Effect of this simplified approach 

could be further evaluated using the Pavement-ME sensitivity results. 

5. When developing monthly distribution factors, vehicle classes were divided into three 

groups based on body type: VC 4-7, VC 8-10, and VC 11-13 (i.e., single-unit, tractor-

trailer combination, and multi-trailer combination). Insignificant seasonal variations 

were observed in the data. This could be due to the fact that vehicles that serve unlike 

purposes were combined in the same group (local service trucks or resource-

extraction industry trucks were combine with long-haul trucks). Therefore, there is a 

need to determine Level 2 inputs based on the most observed VCs in Michigan (i.e., 

VC5 and VC9). 

6. The 2009 report identified differences in single, tandem, tridem, and quad axles per 

vehicle group (AGPV) values. AGPVs are typically stable between the roads unless 

some unusual truck fleets are using these roads. AGPV is a function of the truck fleet, 

not road or location. Significant deviations in AGPV could be a sign of vehicle 

misclassification. The reason is attributed to misclassification of vehicles by Trafload 

software. It is expected that no difference in AGPV should be observed with the 

PrepME. 

7. In the 2009 study, the single axle load spectra were grouped into three clusters. The 

clustering was based on VC5 and VC9 percentages and was not based on axle weight 

differences on the truck-level. Differences in axle weights should be used for 

individual truck classes. When axle load spectrum is based on all classes combined, 

then proportion of light weight vehicle classes to heavy weight vehicle classes (i.e. 

the proportion of VC5 and VC9 vehicles) matters more than truck weight 

characteristics of a given vehicle class. Since another parameter - VCD parameter is 

already being used by the MEPDG method to account for proportion of different 

vehicle classes, there is no need to account for that again in clustering of axle load 

spectra. Instead, it would be of an advantage to figure out which roads have high 

percentage of light or heavily loaded trucks for individual vehicle classes that are 

dominant on Michigan roads (i.e., focus on identifying roads that has a lot of empty 

or fully loaded freight trucks or empty/loaded service trucks, or empty/loaded 

resource extraction trucks). 

8. The tandem axle load spectra were developed based on all vehicle classes combined. 

These spectra exhibited five distinct clusters. Clusters 1-3 showed the presence of 

lighter axles as compared to Clusters 4 and 5. Dominant truck classes with tandem 

axles (typically VC8 and VC9) should be focused on for developing Level 2 inputs. 

9. In tandem clusters, the loaded peak was reported in 30-35 kips range. With a legal 

load limit of 34 kip, 35 kip peak seems to be a sign of low precision or calibration 

drift. Data quality issues should be further investigated using new data. Information 

about calibration frequency, procedures, and documented accuracy are essential in 

concluding about data accuracy and precision. 

10. The study indicated peak values for the quad axle load spectra occur at 104 kips. This 

is an unexpected and unreasonable number that needs further investigation. Perhaps 

these numbers manifest a catch-all function for penta+ (five or more) axles in the 

TrafLoad software. If proven to be true, this would make sense. Penta+ axles should 

be accounted for but not combined with quad axle load spectra. The PrepME should 

be able to identify such axle configurations.
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11. While the methodology used to develop clusters is well described, no step-by-step 

procedures are provided in the report that could be used by MDOT to implement this 

methodology. If clustering methodology was implemented in the PrepME software, 

software algorithm should be documented in detail. 

12. Review of the tandem, tridem, and quad loading defaults indicates potential data 

anomalies, deviation from typical values, or issues with equipment precision and bias. 

WIM calibration dates and calibration results should be used in WIM data QC 

process to draw sound conclusions about data accuracy/reasonableness. 

13. At least three years of data per vehicle class per site should be used to avoid 

mistaking natural variations in truck volume (due to low volumes in some vehicle 

classes) and identify repeatable and stable seasonal truck volume variations to 

develop sound conclusions and defaults. Multiple years of WIM data will help to 

reduce bias in measurements, effects of calibration drifts, as well as variations in 

traffic. 

14. In addition to the continuous data, data from short-term counts should be used to the 

extent possible. Site-specific or site-related (same road, different location) 48-hour 

vehicle classification count is better than Level 2 or 3 defaults, or at least it could be 

used to guide the selection of the appropriate default. Such count could be obtained 

inexpensively using pneumatic road tubes. It is likely that a significant amount of this 

data is already available at MDOT and being collected annually as part of FHWA 

HPMS data submission requirement. 

15. For each road segment with site-specific traffic data, the available truck classification 

and WIM data should be analyzed to identify “design lane” as a lane with the most 

substantial number of heavy axle load applications. This information should be stored 

in a database table for future use.

2.3.2 Recommended Improvements

Based on the review of other States’ ME implementation efforts and considering the 

Pavement-ME requirements for traffic data characterization, several recommendations 

for selecting, developing, or enhancing the existing methodology were developed, as 

presented below.

1. The methodology should take into account pavement performance and pavement 

design criteria used by MDOT. The number of traffic defaults should be determined 

based on the differences in pavement design outcomes observed for a range of traffic 

conditions identified from MDOT traffic data. If the differences in pavement design 

outcomes are insignificant for the observed traffic conditions, one statewide default 

would be sufficient. However, if pavement designs are sensitive to changes in the 

traffic input parameters computed based the MDOT traffic data, then multiple traffic 

defaults should be developed to represent each traffic loading condition that results in 

different pavement design outcomes. 

2. The methodology should be applicable for the roads that will be designed using the 

Pavement-ME methodology, i.e., if multiple defaults are used, they should be 

applicable to specific types of roads and pavements.
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3. The methodology for the development of the defaults and the procedures for updating 

the defaults or selecting defaults for specific pavement designs will be based on the 

data that are readily available for MDOT personnel. 

4. The methodology for axle load characterization and Level 2 grouping of roads should 

focus on accurate characterization of loads that matter most for pavement designs 

(i.e., heavy axle loads and dominant heavy truck classes). 

5. The methodology for the development of the defaults and the procedures for updating 

the defaults or selecting defaults for specific pavement designs should be well 

documented and easy to follow. In other words, step-by-step instructions and 

examples should be developed showing how to update the defaults, as well as how to 

select and use the defaults in the pavement design. 

6. The procedures for development, updating, and/or using defaults should be supported 

by the tools available or developed for MDOT personnel. 

7. The Pavement-ME Level 2 traffic inputs should be developed considering the 

limitations of MDOT traffic data collection program. This primarily refers to the 

limited number of continuous monitoring WIM and vehicle classification sites that 

may not provide representative coverage of the roads in MI that will be designed 

using the Pavement-ME. Also, due to unavailability of freight data for some routes. 

8. Enhance WIM data QC checks from 2009 study to focus on the accuracy of heavy 

loads and proper vehicle classification to compute site-specific parameters. 

9. Use available MDOT traffic data to identify ranges of values for different traffic input 

parameters, for different road functional classes:

 Rural Interstates 

 Urban Interstates 

 Urban Freeway/Expressway and Non-Interstate Principal Arterials 

 Rural Non-Interstate Principal Arterials 

 All Minor Arterials and Collectors

10. Evaluate the practical significance of the findings, i.e., identify traffic parameters 

where the use of multiple defaults would likely cause significant differences in 

pavement design outcomes using criteria provided by MDOT (such as 3 or 4 years 

difference in 20-year service life) using pavement ME locally-calibrated models. 

Develop a list of parameters requiring Level 2 clusters. 

11. Use functional road class, AADTT, and VCD information to see if these parameters 

could be used to assign mathematical clustering results, i.e., find parameters that 

could serve as cluster differentiators. If needed, introduce additional parameters that 

are available to MDOT such as road type, the direction of travel, proximity, and size 

of metropolitan areas, and freight route designation. 

12. Once parameters that could characterize mathematical clusters are identified, develop 

procedures showing how MDOT could use available information/parameters to 

identify what cluster default to be used for the design. Develop decision trees or 

automated procedures for MDOT to use in the cluster default selection process. 

13. Develop procedures how cluster defaults could be updated in the future using 

available cluster differentiators. In other words, use differentiators to identify and 

assign available data for each “cluster” or group and compute average values for each 
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“cluster” to be used as new “cluster” defaults (no mathematical modeling should be 

needed for this step). 

14. Store computed site-specific Pavement-ME traffic inputs, Level 2 and 3 defaults in a 

database, along with the information about traffic sites used to develop these defaults, 

including information about site location, road inventory information, data collection 

period, data availability (number of days with data), WIM calibration dates and 

performance parameters (accuracy of measurements). Develop documentation 

explaining database table designs, data upload, and data retrieval procedures. 

15. Develop step-by-step instructions for MDOT pavement engineers for obtaining Level 

2 traffic inputs for pavement design projects.

2.4 METHODOLGIES FOR DEVELOPING TRAFFIC INPUTS IN 

MICHIGAN

Based on the above review, the following approaches are proposed for developing traffic 

inputs in Michigan: 

1. Improved existing methodology 

2. Alternative simplified methodology 

The following sections describe the summary of each proposed approach. 

2.4.1 Improved Existing Methodology

Based on the review, several improvements are recommended to enhance the existing 

methodology to characterize the traffic inputs based on the new (2011 to 2015) WIM and 

classification data. Several areas were identified during the review that would lead to the 

improved road groupings or clusters for more representative Level 2 and Level 3 defaults. 

The following potential improvements are proposed in the current methodology:

1. Level 3 statewide defaults – Based on the distribution of PTR locations, it may be 

beneficial to have 2 statewide defaults: one for interstates and roads with high volume 

of heavy trucks (i.e. designated state freight routes) and one for all other roads. 

2. Level 2 MAF groups/clusters – In the previous study, vehicle classes were divided 

into three groups based on body type: VC 4-7, VC 8-10, and VC 11-13 (i.e., single-

unit, tractor-trailer combination, and multi-trailer combination). Very little seasonal 

variations were observed. This could be due to the fact that different truck classes 

were combined in the same group (i.e., local service trucks or resource-extraction 

industry trucks were grouped with long-haul trucks). Analysis of individual vehicle 

classes may help to better identify seasonal trends. This would be most applicable to 

the vehicle classes that are frequently observed on MI roads (typically classes 5 and 

9). 

3. An easy to follow step-by-step procedure will be developed for future use by MDOT 

personnel. 

4. The current methodology uses freight data and discriminant analysis for assigning a 

site to a cluster for significant traffic inputs. However, some routes do not have
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freight data available. In such cases, there is a need to develop alternative approaches 

to establish Level 2 traffic inputs for a particular project. For example, decision trees 

based on the data availability can be developed and used for cluster assignments.  

2.4.2 Alternative Simplified Methodology

The alternative simplified methodology will include the following steps:

1. Use available MDOT traffic data (AADTT, VCD information, and road 

inventory/GIS information) to identify ranges of values for different traffic input 

parameters for different road functional class groups, e.g.: 

 Rural interstates 

 Urban interstates 

 Urban freeway/expressway and non-interstate principal arterials 

 Rural non-interstate principal arterials 

 All minor arterials and collectors

2. If needed, introduce additional parameters that are available to MDOT such as road 

type or designation (Interstate, US, State, county, etc.), direction of travel, proximity 

and size of metropolitan areas, and freight route designation. 

3. Once the groups are identified, establish the traffic inputs based on the averages of 

sites in each individual group. Averages with these groups should be updated when a 

PTR site is removed or added or new traffic data become available (see 

recommendations in Chapter 6).

2.5 SUMMARY

This chapter presents a review of literature and state-of-the-practice related to traffic 

inputs in the Pavement-ME. The Pavement-ME uses hierarchical input levels and 

provides flexibility to the designer in obtaining the design inputs based on the project 

importance. Three different input levels can be used in this hierarchical system ranging 

from site-specific input values to “best-estimate” or default values as classified below:

1. Level 1 – These inputs provide the highest level of accuracy because they are 

site/project specific and are measured directly, 

2. Level 2 – These inputs provide an intermediate level of accuracy and are used 

when Level 1 inputs are unavailable. Correlation or regression equations are used 

to estimate these inputs. 

3. Level 3 – These inputs are based on global or regional averages and provide the 

least amount of knowledge regarding the input parameters.

Most of these inputs can be obtained through weigh-in-motion (WIM), automatic vehicle 

classification (AVC), and vehicle counts, etc. Each of these traffic inputs were briefly 

described in this chapter. Several guidelines used to obtain the Levels 2 and 3 inputs for 

use in the Pavement-ME are documented. The NCHRP 1-37A final report (8) provides 

guidelines for truck traffic data based on the allowable error and permissible bias for each 
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data element in establishing the truck volume distribution and axle load spectra. Also, 

one set of ALS for each truck class was determined and included in the software as 

defaults. The 2016 FHWA Traffic Monitoring Guide (TMG) (5) provides 

recommendations and best practices for highway traffic monitoring, including monitoring 

of truck loading. It is recommended that the roadway system be divided into groups using 

clustering or traditional approaches such that each road within a group experiences 

similar truck-loading patterns. The NCHRP 1-39 report (9) also contains guidelines for 

collecting traffic data to be used in the MEPDG. The LTPP TPF-5(004) study has 

generated high-quality traffic loading information for 26 LTPP Special Pavement Study 

(SPS) sites located in 23 different States representing moderate and high volume rural 

principal arterial interstate and non-interstate highways. The WIM data from the LTPP 

TPF 5(004) study were used to develop a two-tier ALS defaults (10): (a) Tier 1 Global 

defaults representing average loading, and (b) Tier 2 Defaults representing different 

loading patterns (clusters). Tier 2 defaults were developed based on hierarchical 

clustering of axle load data from multiple sites. The newly computed ALS defaults had 

fewer very light and heavy loads compared to the original defaults. This is likely due to 

the fact that the new defaults were collected with more consistently calibrated and precise 

WIM equipment than the data set used for the development of the original NALS defaults 

under the NCHRP 1-37A project.

Many other state highway agencies (SHAs) have determined the truck traffic weight and 

volume defaults to be used with the Pavement-ME.  It was found that that the local axle 

load spectra for different axle configurations deviate from the global default values 

currently included in the Pavement-ME software, especially for local and secondary 

routes. Therefore, the development of regional or statewide traffic defaults is necessary to 

implement the Pavement-ME design approach. Various approaches have been used to 

obtain the Levels 2 and 3 inputs for use in the Pavement-ME. A review of these 

techniques used by other States is provided in Table 2-10.
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Table 2-10 Summary of clustering methodologies used to generate level 2 inputs

State
Level 2 

inputs
Methodology Clusters assignment

Arizona Yes
Hierarchical clustering method 

using correlation coefficient

Traffic patterns for each of the 

clusters were defined using 

highway functional 

classification.

Alabama Yes

Hierarchical clustering method 

using Pearson’s correlation 

coefficient

Traffic patterns for each of the 

clusters were defined 

geographically.

Arkansas Yes

Hierarchical clustering method- 

Wards method and Euclidean 

distance. Also K-means and 

Fuzzy methods were used.

Multi-category logit [ML] 

models were developed to 

assign the probabilities that a 

site belongs to a cluster.

Colorado Yes Hierarchical clustering method

Uses statewide defaults for all 

inputs except VCD. The 

assignment for VCD is based on 

functional classification of 

highways.

Georgia No

Road groups with similarities in 

traffic loading patterns were 

identified 

Assigned LTPP defaults to GA 

roads based on truck volume, 

vehicle classification and road 

type criteria.  

48-hour site specific 

classification counts for VCD 

and AADTT recommended plus 

portable WIM for ALS default 

selection.

Michigan Yes

Hierarchical clustering method- 

Wards and squared Euclidean 

distance. 

Assignment using discriminant 

analyses.

North 

Carolina
Yes

Hierarchical Clustering using 

Wards method and Euclidean 

distance.

48-hour site specific 

classification counts for VCD 

and ALS. Statewide average 

values for all other inputs are 

recommended.

New 

York
Yes

Hierarchical Clustering using 

Wards method and Euclidean 

distance.

Statewide average values for all 

inputs are recommended.

The final report “Characterization of Truck Traffic in Michigan for the New Mechanistic-

Empirical Pavement Design Guide” was reviewed to determine if the clustering 

methodology used in the 2009 study is still the “best” way for MDOT to develop Levels 

2 and 3 inputs for the Pavement-ME use. Several areas were identified during the review 

that would benefit from revisions and would lead to the development of the improved 

road groupings or clusters for the determining more representative Level 2 and Level 3 

traffic defaults. Potential areas of improvement in the current practices are presented in 

this chapter. 
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Table 3-2 List of PTR sites with WIM and classification data

PTR Site Route Sensor Type Latitude Longitude

037319 I-196 Quartz 42.437 -86.248

096429 I-75 Quartz 43.629 -83.960

117189 I-94 Quartz 41.769 -86.738

127269 I-69 Quartz 41.849 -84.996

137159 I-94 Quartz 42.298 -85.039

137169 I-94 Quartz 42.283 -84.873

195019 US-127 Quartz 43.024 -84.546

211459 US-2 Quartz 45.728 -87.231

212229 US-2 Quartz 45.921 -86.992

221199 M-95 Quartz 46.029 -88.060

238869 I-69 Quartz 42.534 -84.821

256119 I-75 Quartz 43.210 -83.770

256449 I-69 Quartz 42.967 -83.782

271009 US-2 Load Cell 46.466 -90.192

308129 US-12 Quartz 41.990 -84.647

338029 US-127 Quartz 42.538 -84.443

345299 I-96 Quartz 42.879 -85.057

387029 I-94 Quartz 42.285 -84.284

387049 US-127 Quartz 42.174 -84.365

403069 US-131 Quartz 44.823 -85.136

419759 M-6 Quartz 42.850 -85.607

478049 I-96 Quartz 42.646 -84.085

478219 I-96 Quartz 42.563 -83.834

492029 US-2 Quartz 46.003 -84.998

588729 US-23 Quartz 41.784 -83.696

615289 US-31 Quartz 43.224 -86.205

694049 I-75 Quartz 45.144 -84.670

705059 I-196 Quartz 42.866 -85.802

705099 I-96 Quartz 43.053 -85.937

724129 US-127 Quartz 44.264 -84.803

724149 I-75 Quartz 44.317 -84.451

752199 M-28 Quartz 46.345 -85.983

776369 I-69 Quartz 42.978 -82.803

776469 I-94 Quartz 42.940 -82.507

787119 US-131 Quartz 41.842 -85.677

807219 I-94 Quartz 42.220 -85.821

818239 US-23 Quartz 42.414 -83.765

828839 I-94 Quartz 42.220 -83.466

829189 I-275 Piezo BL 42.180 -83.388

829209 I-275 Quartz 42.309 -83.442

829699 I-75 Quartz 42.110 -83.241

The PrepME (1) was used for analyzing the raw traffic data from PTR sites and developing 

the Level 1 traffic inputs. MDOT provided the final PrepME database (January 2011 to 

December 2015) after quality checks (availability of at least one week of data in each month, 

front and gross vehicle weights). The research team extracted the Level 1 data for traffic 

inputs through PrepME.
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Table 3-3 Number of sites with available WIM and classification data

Type of Data Available QC Passed

Weight and Classification 43 41

Weight Only 0 0

Classification Only 19 18

Total

m n

62

d d 11 1n

 

1m mn 

D   
d d 

59

3.2 GENERATION OF TRAFFIC INPUTS

Site-specific traffic inputs (Level 1) were generated for each of the 41 WIM sites using the 

PrepME after extensive QC checks (see Chapter 5 for the PrepME QC). Development of 

regional inputs (Level 2) is crucial when site-specific data are not available. The averages 

from nearby sites (regional) with similar traffic characteristics (groups or clusters) can be 

used as Level 2 data (2). The average of all the sites (statewide average) can be used as Level 

3 data. As discussed in Chapter 2, Level 3 data are further split into Levels 3A, and 3B, 

where 3A represents average of freeways and non-freeways, and 3B represents overall 

statewide average for traffic inputs. 

The Federal Highway Administration (FHWA) Traffic Monitoring Guide recommends the 

following two approaches for developing Level 2 inputs (3). 

(a) Cluster Analyses (Improved existing approach) 

(b) Traditional Approaches (Simplified methodology) 

These two approaches are explained in more detail below: 

3.2.1 Cluster Analyses

Cluster analysis is a data mining technique that identifies homogeneous subsets of data (also 

known as clusters) within a dataset using only the information found in the data. It uses 

mathematical similarity of two data objects to group them. The steps involved in a typical 

cluster analyses include (a) obtaining the data for cluster analyses, (b) identifying the 

significant attributes of the data, (c) choosing a distance measure, (d) selecting a clustering 

technique, (e) deciding on the number of clusters, and (f) interpreting the results (4).  A 

dataset used for cluster analyses often contains a collection of data objects. Each data object 

has some attributes that capture the object’s fundamental characteristics. The primary aim of 

cluster analyses is to separate the dataset into subsets such that objects within a subset are 

similar to one another and are different from those in other subsets. The word ‘Clustering’ 

commonly refers to an entire collection of clusters. A multivariate  data matrix, D, 

usually represents the data used for cluster analyses as shown below. Each row contains a 

data object, and the columns contain the attribute values describing each object in the dataset.

(1) 
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(1,2) (0.40 0.22) (0.53 0.38) 0.234  dist     2 2

 = value of the jth attribute of object i.

Attributes of the data objects in the matrix may either be continuous, or ordinal or a mixture 

of both. Some attributes of an object might not define it very well and might be irrelevant. 

Such attributes should be excluded if possible, or weights could be added to the essential 

attributes in the data matrix (4). Most clustering techniques convert the data matrix into a 

 ‘distance matrix’ of inter-object similarities or dissimilarities. The 

similarity/dissimilarity between two objects with attributes on a continuous scale is a 

numerical measure of the degree to which they are alike. Two objects are said to be close to 

each other when the dissimilarity is small. Several similarity measures can express likeness 

between a pair of objects. In general, two categories broadly define these measures: (a) 

distance, and (b) correlation-type. ‘Euclidean Distance’ is the most commonly used distance 

measure which is the straight line distance between two objects. It is calculated using 

Equation (2). 

 (2) 

where;

= kth component of the p-dimensional objects 

To illustrate, consider six two dimensional points (or objects) with x and y coordinates as 

follows (5): (a) P1 (0.40, 0.53), (b) P2 (0.22,0.38), (c) P3 (0.35,0.32), and (d) P4 (0.26,0.19), 

(e) P5 (0.08, 0.41), and P6 (0.45, 0.30).The distance calculation between P1 and P2 is as 

follows:

(3)

Likewise, the distances between all possible pairs of objects can be computed and expressed 

in the form of a ‘distance matrix.' The non-diagonal elements in this matrix represent the 

distances between pairs of objects and the diagonal elements represent the distance from each 

object to itself (hence, they are always zero) as seen in Equation (4) (6). The objects used in 

this example has only two dimensions (attributes), but distances for objects with more than 

two attributes can be computed (e.g., Monthly adjustment factors would have twelve 

attributes, i.e., one for each month). 



 
 

1 

2P 

3P
 
 

P 
4

 
5

6

P

P

 
 
 

P

dist matrix 

P1 P2 P3 P4 P5 P6

0 0.23 0.22 0.37 0.34 0.24

0.23 0 0.14 0.19 0.14 0.24

0.22 0.14 0 0.16 0.28 0.10

0.37 0.19 0.16 0 0.28 0.22


0.34 0.14 0.28 0.28 0 0.39

0.24 0.24 0.10 0.22 0.39 0

|r
 n

( , ) |d x y   x y k k

 1k

1/r

 Mahalanobis( , ) (x y x 1)y  (x )Ty



 1

( , )corr x y  
covariance( , ) xyx y 

( ) ( )stdev x stdev y x y 

(4)

Mikowski distance is a more generalized form of the Euclidean distance as seen in Equation 

(5). When r is equal to 1, it is called ‘Manhattan’ or ‘City block’ distance which is the 

distance between two points measured at right angles along the axes.

 

The other commonly used similarity measure is the ‘Mahalanobis’ distance as shown in 

Equation (6). It is a generalization of the Euclidean distance and could be used when the 

attributes of the data objects are correlated or have different ranges of values. 

where:

(7)

A number of similarity/dissimilarity measures exist, which makes choosing a measure for 

cluster analyses a challenge. Earlier research studies have come up with categorizations of 

the similarity or dissimilarity measures based on the critical properties of the data ( e.g., scale 

of data, metric, and Euclidean properties of similarity matrices). However, the properties are 

not very conclusive for choosing between the measures (7-11). The general observation is 

that the nature of the data should strongly influence the choice of the similarity measure. 

Sometimes, a similarity measure may already have been used previously and thus may have 

answered the choice of the similarity measure. Occasionally, the clustering technique might 

limit the choices of the similarity measures that could be used. Different similarity measures 

can be used to see which ones produce more realistic results. However, for continuous data, 
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inverse of the covariance matrix

Correlation measures are the other category of similarity measures. The most widely used 

correlation measure is the Pearson correlation coefficient (7). The correlation between two 

data objects is a measure of the linear relationship between their attributes. A correlation 

value of ‘1’ indicates a strong relationship, and a value of ‘-1’ indicates a fragile relationship 

between the data objects and is calculated using Equation (7).

(5)

(6)

= covariance matrix whose ijth entry is the covariance of the ith and jth attribute

 =
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distance measures should be used when the magnitude of the data is essential. Assuming that 

the attributes of a data object (e.g., the traffic volume in January does not affect the traffic 

volume in February) are not correlated, the Euclidean distance was chosen as the similarity 

measure in this study as it can be easily interpreted. More information on the choice of 

similarity or dissimilarity measure and a decision-making table that may help choose the 

similarity measure can be found in the literature (5, 10).
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Clustering techniques divide data into a set of clusters commonly referred to as ‘clusterings.’ 

While the clusterings can be described in many ways, the commonly used distinction 

between different types of clusterings is whether it is partitional or hierarchical. A partitional 

clustering is merely a division of the set of data objects into nonoverlapping subsets (clusters) 

such that each data object is precisely in one subset. If these clusters are permitted to have 

sub-clusters, then a hierarchical clustering is obtained. The most commonly used clustering 

techniques (5) are discussed below.

3.2.1.1 K-means 

It is a partitional clustering technique that divides the dataset into a predetermined number of 

clusters. The algorithm includes choosing ‘K’ initial centroids (which equals the desired 

number of clusters). Each data object is assigned to the closest centroid, and each collection 

of data objects assigned to a centroid forms a cluster. After each iteration, the centroid of 

each cluster is updated based on the data objects assigned to that cluster. The iterations stop 

when no objects change clusters, or equivalently, the centroids remain the same. Only a few 

times, K-means reaches a state in which no objects are shifting from one cluster to another. 

Usually, a rule is set to stop the iterations after reaching a steady state (e.g., only less than 1% 

of the objects are changing the clusters) (5). Like every clustering technique, K-means needs 

a similarity measure to assign the object to a centroid. As discussed before, several options 

exist, but the most often used measure is the Euclidean distance. Given two sets of clusters 

from different K-means runs, the overall sum of squared error (SSE) often decides the better 

cluster as shown below (5).

 (8) 

where:

= number of clusters 

= cluster  

The mean of a cluster is always the best centroid for minimizing the SSE of a cluster and is 

shown below. By minimizing the SSE of cluster K and solving for its centroid, 

 

 = data object in cluster 

= centroid of cluster 
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While K-means is a very general algorithm that can be used with different data types, it has 

various limitations. One of them is choosing the initial centroids. Randomly choosing the 

initial centroids often results in poor clusters and sometimes in empty clusters. While there 

are remedies, it is often an exhaustive procedure to find the optimum initial centroids. One 

procedure would be to run K-means multiple times with random initial centroids and use the 

one with the least SEE. Another procedure is to use the hierarchical clustering at first to find 

the clusters and their centroids and then rerun the K-means. Also, the number of clusters 

required is an input into the K-means algorithm, which can be difficult to determine before 

the clustering. For these reasons, K-means technique will not be used in the cluster analyses 

of traffic data.

3.2.1.2 Hierarchical Clustering

=

Hierarchical clustering techniques are another prominent category of clustering methods.  

There are two approaches for generating hierarchical clusterings (a) divisive, and (b) 

agglomerative. In divisive clustering approach, all the objects in the dataset are considered as 

a single cluster at the beginning and are divided it into two clusters at each stage until all the 

clusters have only a single object. In the first step of the clustering, all the possible partitions 

number of objects in the cluster

of the dataset need to be considered which equals to combinations (where n is the

number of data objects). The large number of combinations makes divisive clustering 

difficult to implement. Agglomerative approach performs clustering in an opposite manner as 

compared to divisive approach. Agglomerative clustering technique considers each object in 

the dataset as an individual cluster and merges them one at a time in a series of sequential 

steps (12). The number of clusters during the first step equals the number of objects in the 

dataset. At each subsequent step, the clusters that are ‘closest’ (or most similar) to each other 

are merged to form a new cluster. The final step merges all the objects in the dataset into one 

single cluster. The objects that are merged to form clusters at each step cannot be reassigned 

to different clusters at a later stage. Agglomerative hierarchical clustering technique is 

characterized by two choices: (a) the measurement of similarity between two objects in a 

dataset, and (b) the type of linkage between clusters (5, 13). The clusters formed using the 

hierarchical techniques can be represented using a two-dimensional diagram known as a 

‘dendrogram.' A dendrogram illustrates the clusters formed at each stage of the clustering

 = data object in cluster 
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process. Figure 3-1 shows an example of a dendrogram. Two clusters are merged at each step 

of the process at a distance, or the height represented by the y-axis. The clustering technique 

(or the ‘linkage type’) needs to be established after choosing the distance or similarity 

measure (6). Discussed below are the most commonly used methods.

(b)

Figure 3-2 Single linkage clustering

Figure 3-1 An example of the dendrogram

Single Linkage Method 

This method is also called the nearest neighbor or minimum method.  The similarity between 

two clusters is the minimum of the distance between any two objects in two different clusters 

(12). Consider the six two dimensional points and the distance matrix discussed above [see 

Equation (4)]. In the first step of this clustering technique, points ‘3’ and ‘6’ are merged into 

a cluster (see Figure 3-2a) because they have the smallest distance of 0.102 between them. 

(a)
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({3,6},{2,5}) min( (3,2), (6,2), (3,5), (6,5))dist dist dist dist dist

min(0.143,0.244,0.285,0.386) 0.143 

({3,6},{4})  min( (3,4), (6,4), )dist dist dist

min(0.158,0.220) 0.158 

{3,6},{2,5}

As seen in Figure 3-2b (dendrogram), that is the height at which they are merged into a single 

cluster. In the second step, points ‘2’ and ‘5’ are merged into a cluster. The distances 

between the newly formed clusters in step 3 are calculated as follows:

{3,6} {2,5}

*5
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I
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III

V

{3,6} {2,5} {3,6} {4}

In the third step, the clusters  are combined to form a third cluster at the height of 

0.143 as seen in the dendrogram. This process goes on until all the points are combined into 

one single cluster at the height of approximately 0.22. 

(b)

Figure 3-3 Complete linkage clustering

In the third step, instead of and merging next, is merged with because the 

procedure takes into account the least maximum distance between clusters. 

Complete Linkage Method 

This method is also called the furthest neighbor or maximum method. The similarity of two 

clusters is defined as the maximum of the distance between any two points in two clusters. 

As with the single linkage method, clusters and  are formed first (See Figure 3-3a 

and 3-3b).

(a)
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For the group average version of hierarchical clustering, the similarity of two clusters is the 

average of pairwise similarity among all pairs of points in the different clusters. Group 

average method is an intermediate approach to the single, and complete link approaches. 

Figure 3-4 shows the dendrogram for this method.

(9)

(b)

Figure 3-4 Group average clustering

An illustration of group average method is given below.

 is calculated using Equation 

(9).

(a)

 and The similarity between two clusters A and B of sizes 
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are merged in the fourth step.

Ward’s Method

(b)

Ward’s method is another general agglomerative hierarchical clustering technique. The 

similarity of two clusters depends on an objective functions’ optimal value. The most widely 

used objective function is the error sum of squares or within-cluster variance. Clusters with 

the least increase in the overall within-cluster variance when combined are merged at each 

step. Figures 3-5a and 3-5b show the dendrogram for this method.

Figure 3-5 Ward’s method of clustering

The similarity between two clusters A and B of sizes  and can be calculated by using 

Equation (10), where and are the centroids of clusters A and B.

 (10)

(a)
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{3,6} and {2,5}
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({3,6},{1})dist 
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dist 
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({3,6},{1}) 0.254
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({3,6},{2,5}) 0.373
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dist 



In the first two steps, 

{3,6}

 are combined separately because of the least increase 

in the sum of squares when combined. The third step is illustrated below. 

{4}The third step combines clusters and since the increase in the sum of squares is 

minimum among other combinations. 

The different linkage methods discussed above define the distance between the pair of 

clusters in a certain way. Each of these linkage algorithms can yield entirely different results 

when used on the same dataset. The single linkage method tends to produce one large cluster 

with other clusters containing very few objects because several clusters may be joined 

together (called ‘chaining effect’) merely because one of their objects is within proximity of 

an object from a separate cluster. This problem is specific to single linkage because only the 

minimum distance between objects is used. As mentioned before, the objects that are merged 

to form clusters at one step cannot be reassigned to different clusters at a later stage, and 

therefore the chaining effect could lead to abnormal clusters. However, single linkage 

method can be used to detect the outliers, as these will always be merged during the final step 

of the clustering process (6, 12). Complete linkage method solves the problem of chaining. 

However, they tend to produce large globular clusters. Outliers can profoundly influence the 

outcome of the clusters as this clustering technique uses the maximum distance between the 

objects. The average link method is a compromise between the single and complete linkage 

methods as it takes into account the average distances between the objects. This method is 

relatively robust compared to the single and complete linkage methods as it takes into 

account the cluster structure (7). Ward’s method is sensitive to outliers and tends to find 

same size and spherical clusters. The average linkage and Ward's method are the most 

frequently used methods. There are no guidelines on choosing the right linkage method. 

However, some studies found that Ward’s method performed better than the average linkage 

method (14). Therefore, Ward’s method was used for cluster analyses of the traffic data. 

The advantages of cluster analyses are that the groups are formed objectively (based on a 

mathematical function) and not subjected to bias or subjective decisions. The other advantage 

is that it finds patterns in the data that are not intuitively obvious therefore providing new 

insights into traffic patterns in a region. One main disadvantage is the lack of guidelines on 

establishing the optimal number of clusters. While various techniques were developed to 

identify the optimal number of clusters, none of them are perfect and have their drawbacks. 

The other disadvantage is that, since clustering is purely a mathematical technique, the 

objects in a cluster might not have the same identifiable attributes making the assignment of 

data from a new location to the existing clusters difficult. However, the advantages outweigh 
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the disadvantages and hence cluster analyses was used to develop clusters for different input 

levels in the State of Michigan. The Euclidean distance and Ward’s method was used as the 

similarity measure and the linkage method, respectively. The clusters formed from here on 

will be designated as ‘Level 2A’ inputs. Figures 3-6 and 3-7 show the dendrograms of all the 

traffic inputs using Euclidean distance and Wards method.

(a) HDF (b) MAF( VC5)

(c) MAF (VC9) (d) VCD 

Figure 3-6 Cluster dendrograms for various traffic inputs — Michigan PTR sites 

3.2.1.3 Choosing the Optimal Number of Clusters

Hierarchical clustering provides limited guidance on the number of clusters to be retained 

from the data. Several criteria are used to find the optimal number of clusters in the dataset. 

A research study (15) evaluated over 30 such criteria and ranked ‘Calinski-Harabasz 

Criterion’ as the top performing criteria. The Calinski-Harabasz criterion is also called the 

variance ratio criterion (VRC). The Calinski-Harabasz index is defined as (16)

(11) 

where: 

SSB = overall variance between clusters
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SSw = overall variance within clusters

( ) { ( )} ( )n n k kE log W loGap gk W

 

K = number of clusters 

N = number of observations

(a) SALS (b) TALS

(c) TRALS (d) QALS

Figure 3-7 Cluster dendrograms for various traffic inputs — Michigan PTR sites

A dataset that has distinct clusters should have a large between-cluster variance (SSB) and a 

small within-cluster variance (SSw). The larger the ratio, the better the data partition. 

value is the highest for the optimal number of clusters. It should also be noted that the 

‘Calinski-Harbasz Criterion’ is best suited for K-means clustering (17).

Gap criteria is a recently developed method that can be used with virtually any clustering 

technique (18). The gap value is calculated as follows:

 (12)

where:

n = sample size 

k = number of clusters 

Wk = pooled within-cluster variance
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 (13) 

where:

nr = number of data points in cluster r 

Dr = sum of pairwise distances for all objects in cluster r 

The optimal number of clusters has the largest gap value (could be local or global) within a 

tolerance range. Monte Carlo sampling from a reference (null) distribution is used to 

determine the expected value . The value is obtained from the sample 

data. Several other measures are widely used but are not too efficient and often could result 

in substantial errors (11). 

Figure 3-8 shows the ‘Calinski-Harbasz Criterion’ and ‘Gap Criterion’ methods applied to 

the hourly distribution factors (HDF). The results show that five clusters will have the 

highest  and gap values. Hence, the HDF dataset was split into five clusters. The 

‘Calinski-Harbasz Criterion’ and ‘Gap Criterion’ for other traffic inputs can be found in 

Appendix A.

Figure 3-8 Optimum number of clusters for HDF

Using both these criteria, and engineering judgments, the traffic datasets were split into the 

following number of clusters for each traffic input. Figures 3-9 and 3-10 show the cluster 

averages of all the traffic inputs mentioned above.

1. Hourly distribution factors (HDF) – 5 clusters

The cluster analysis resulted in five clusters for HDF as shown in Figure 3-9(a). Cluster 1 

contains heavier evening proportions of trucks and average AADTT values of less than 500. 

Cluster 2 has similar percentage of trucks as sites in cluster 1, but on average shifts left by an 

hour and average AADTT values less than 1000. It is to be noted that the sites in both 

clusters 1 and 2 are mostly located on US-2 and I-75. 
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Figure 3-9 Cluster averages (Level 2A) for various traffic inputs

(b) MAF( VC5)

Cluster 3 average has roughly a 1-2% lower truck percentage between the hours of 7:00 am 

and 4:00 pm than either clusters 1 or 2. Sites in this cluster are located on principal interstates 

with average AADTT values of more than 2300. Sites in cluster 4 have the highest HDF 

during 8 am to 12 noon of all clusters. Most of these sites are on US routes with varying 

traffic levels. Sites in cluster 5 have the flattest curve among all the clusters with all the sites 

located on I-94, I-69 and I-75 suggesting long haul traffic.  

2. Monthly adjustment factors (MAF) based on vehicle class 5 – 4 clusters

Four cluster averages for MAF based on VC5 are shown in Figure 3-9(b). Cluster 1 exhibits 

slight seasonal variability (MAF > 1) having MAFs close to 1.4 during summer months with 

lower values in winter. Most of these sites were located in the Lower Peninsula on a variety 

of roads with varying functional class and AADTT levels. Cluster 2 depicts very little 

seasonal variability with MAFs close to 1. Major routes, such as I-94, I-96 and I-275 are 

present in this cluster and most sites are located in the Lower Peninsula. Cluster 3 displays 
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higher MAF in summer and fall, with much lower MAF in winter and spring. However there 

are only two sites (M-28 and US-2) in this cluster and are located in the Upper Peninsula 

with low AADTT.  Sites in cluster 4 also have higher MAF in summer and fall and are 

mostly located on north-south routes such as I-75 and US-127. 

3. MAF based on vehicle class 9 – 5 clusters

Five cluster averages for MAF based on VC9 are shown in Figure 3-9(c). Almost all the sites 

in all the clusters have no seasonal variability between months. Since, VC9 trucks are used 

for long haul throughout the year, a uniform presence of such trucks is expected on all the 

sites. 

4. Vehicle class distribution (VCD) – 5 clusters

Figure 3-9 (d) illustrates the five clusters, each distinguished by the percentage of VC5 and 

VC9. While four clusters have higher VC9 truck levels than VC5, their proportions are 

different. Sites in cluster 1 have percentage VC9 trucks in the ranges of 45 to 70 while the 

VC5 truck percentage was in the range of 15 to 25. Most of these sites were found on state 

routes such as US-127 and US-2 with one-way AADTT ranging from 700 to 3600. Cluster 2 

contained a majority of sites with percentage VC9 trucks less than 45 while the VC5 truck 

percentage was in the range of 20 to 30. Sites in this cluster are located mostly on rural 

arterials, such as US-2, US-31, M-95, generally with AADTT of less than 1500. Cluster 3 has 

sites that have slightly higher percentage of VC5 trucks than VC9 trucks. Most of these sites 

are on rural arterials with an AADTT of less than 800. Sites in cluster 4 have the highest 

percentage of VC9 trucks (above 75) with very low percentage of VC5 trucks (below 10). All 

the sites in this cluster are located on I-94, I-69 and I-75 with AADTT values ranging from 

2500 to 8000. Sites in cluster 5 have percentage of VC9 trucks between 55 and 70 with 

percentage of VC5 trucks between 10 and 20. Most of the sites in this cluster are located on 

the interstates with a few sites on US-23. The AADTT values ranging from 1200 to 3500.

5. Single axle load spectra (SALS) based on vehicle class 5 – 4 clusters

Single axle load spectra are generally represented by VC5. Therefore, the single axle load 

spectra data for VC5 trucks were clustered and the cluster averages are shown Figure 3-10 

(a). Four clusters were formed and are directly related to the peaks observed in the data. For 

all the sites in the clusters the first peak occurs at approximately 4 to 6 kips while the second 

peak occurs at 8 to 10 kips. A review of the individual single axles for all VCs at all sites 

revealed that the axle load spectra is not influenced so much by the shape of the axle load 

spectra itself but instead the actual distribution of the truck traffic, particularly the presence 

of VC5. Cluster 1 has almost equal proportion of axles in the 4-6 kip range and the 8-10 kip 

range. Cluster 2 has higher proportion of 4-6 kip axles than 8-10 kip axles. The sites located 

in clusters 1 and 2 are a mixture of interstates and state routes and have varying AADTT 

levels. Cluster 3 has only one site (US-2) in the Upper Peninsula and the pattern seen in the 

figure is unique to that site. Cluster 4 has sites with higher proportion of axles in the 8-10 kip 

range than the 4-6 kip range. All the sites in this cluster are located on I-94, I-96 and I-75 

with AADTT levels ranging from 1500 to 8300. 
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Figure 3-10 Cluster averages (Level 2A) for various traffic inputs

6. Tandem axle load spectra (TALS) based on vehicle class 9 – 5 clusters

Tandem axle load spectra are typically represented by VC9. Therefore, the overall tandem 

axle load spectra data for VC9 were clustered and the cluster averages can be seen in Figure 

3-10 (b). Five clusters resulted from the data. The two peaks in the clusters correspond to 

unloaded (9-14 kips) and loaded (30-33 kips) trucks. Clusters 1, 3 and 4 have more light 

axles than heavy, whereas Clusters 2 and Cluster 5 have heavier tandem axles. Clusters 1, 3 

and 4 consist of mostly secondary arterials and rural freeways scattered throughout the state. 

All sites have AADTT less than 3500. Nearly all sites in cluster 2 are located on major 

routes, I-94, I-96, and I-69 in the Lower Peninsula and have AADTT ranging from above 200 

to 8000. Cluster 5 has sites mostly located on I-94 and I-96 with AADTT ranging from 400 

to 5000.

7. Tridem axle load spectra (TRALS) based on vehicle class 13 – 6 clusters

A total of six tridem axle load spectra clusters were generated as shown in Figure 3-10 (c). 

The general trend of the tridem axle clusters show a large proportion of light axles around 12 
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kips followed by a peak value around 40-45 kips. Sites found in the first cluster have the least 

average AADTT and were primarily located on I-75, M-28 and I-94.  Sites contained in 

cluster 2 were also mainly on I-94, I-69 that had AADTT ranging from 400 to 5200. All the 

sites in the other clusters have varying functional classes and AADTT levels.

8. Quad axle load spectra (QALS) based on vehicle class 13 – 3 clusters

The quad axle load spectra clusters can be seen in Figure 3-10 (d). A total of three clusters 

were formed. Peak values for the quad axle load spectra occur at the 18-24 kips, 45-60 kip 

ranges. Dominant characteristics could not be established for the clusters as they have 

varying functional classifications and AADTT levels.

Figures 3-11 and 3-12 show the geographical distributions of the PTR locations and 

associated clusters for all traffic inputs.

(a) HDF (b) MAF VC5

(c) MAF VC9 (d) VCD 
Note: blue = cluster 1, green = cluster 2, red = cluster 3, orange = cluster 4, and black = cluster 5 

Figure 3-11 Geographical distributions for PTRs by clusters for traffic inputs
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(a) SALS (b) TALS

(c) TRALS (d) QALS 
Note: blue = cluster 1, green = cluster 2, red = cluster 3, orange = cluster 4, black = cluster 5, dark blue = cluster 6 

Figure 3-12 Geographical distributions for PTRs by clusters for all traffic inputs

3.2.2 Traditional Approaches

Traditional approaches are more subjective and involve grouping roads that are expected to 

behave similarly (i.e., similar traffic patterns). Attributes of the roadways (e.g., road class 

freeway vs. non-freeway) can be used to identify groups that have similar traffic patterns. 

Such groups based on these attributes are easy to interpret by the users. The roadways that 

have unique traffic patterns could consist of the same functional classification. Attributes 

specific to a State road network could be used to define roads subgroup. Data analyses results 

and knowledge of specific route information should determine the appropriate number of 

these groups. The traffic monitoring guide (TMG) recommends a minimum of three to six 

groups are required, but more groups may be appropriate if significant regional differences 

exist (3). The groups will be referred to as ‘Level 2B inputs’. The advantages of this 

methodology are that the creation of groups is intuitive, and the short-term count from a new 

site can be used to assign it to an existing group. The drawback of this process is that it is not 

entirely objective (involves a lot of subjective decisions which may not explain the 

variability of traffic patterns within a group). 
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The attributes used to classify groups need not necessarily be the same for all the traffic 

inputs and instead should depend on the type of traffic input. For monthly adjustment and 

hourly distribution factors, the primary groups could be based on road class and development 

type such as (a) rural interstates, (b) rural non-interstates, (c) urban interstates, and (d) urban 

non-interstates. The TMG recommends adding a fifth group which consists of roadways used 

by recreational traffic (3). Recreational traffic patterns should be identified using local 

knowledge of specific locations that could generate recreational traffic; they cannot be 

defined based on functional class or area boundaries. An SHA could further expand these 

four groups, but more groups may require more data (more WIM and classification sites) 

which in turn would increase the cost to the agency. The coefficient of variation of monthly 

patterns in urban areas is usually under 10 percent, while in rural areas it ranges between 10 

and 25 percent. Values higher than 25 percent indicate highly variable travel patterns, which 

reflect recreational patterns but may also be due to reasons other than recreational travel. For 

MAF and HDF, functional class (freeway or non-freeway), development type (rural or 

urban), and geographic location within the State have been the typical characteristics for 

grouping the roadways. Recreational (or geographic) designations can be used for roads that 

are affected by sizeable recreational traffic generators occasionally (3).

For VCD, characteristics of roadways to be considered for groupings should be different. 

Previous research has found out that functional class of roadways have an inconsistent 

relationship to truck travel patterns (19, 20). The amount of long-distance truck traffic versus 

the amount of locally oriented truck traffic significantly affect the truck traffic patterns on a 

route. Also the existence of significant truck traffic generators along a roadway such as 

agriculture or significant industrial activity can affect these patterns. Functional road 

classification helps in a limited way to differentiate between roads with heavy through-traffic 

and those with only local traffic. Typically, interstates and principal arterials have higher 

through-truck traffic volumes. However, there are roads with several lower functional 

classifications that are carrying more through-truck volumes than the interstates and principal 

arterials. Developing these groups also requires an understanding of the freight movements in 

the State (19, 20). Communication with the staff at the SHA would help in identifying the 

local and statewide patterns. Cluster analyses could be used to identify the traffic patterns 

initially, and each cluster could be looked at to gain a fundamental idea of the roadway 

characteristics of the PTR locations in that cluster.

Based on above discussion, for Level 2B inputs, the challenge lies in identifying a 

combination of attributes that can be used to group the PTR locations. The traffic patterns at 

the PTR locations should be similar within a group and should be different between the 

groups. An automated process was developed to help identify such combinations of 

attributes. The following attributes from the MDOT’s sufficiency database were identified 

for grouping different PTR locations:

 Functional classification (Freeway vs. Non-Freeway) 

 Development type (Urban vs. Rural) 

 One-way AADTT levels (1 “<1000”, 2 “1000-3000”,3 “>3000”) 

 Corridors of highest significance, COHS (National, Regional, and Statewide) 
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 Number of lanes (2, 3 and 4) 

 Road type (Non-freeway divided, Non-freeway undivided, and Freeway) 

 Vehicle class 9 (VC 9) distribution levels (< 45, 45 – 70, >70)

It should be noted that the MDOT sufficiency database itself is no longer being supported, 

but its data is still available in other platforms and is being updated. Several attributes can be 

chosen at a time to divide the PTR locations into groups. Tables 3-4, to 3-6 list the possible 

2-, 3-, and 4-way combinations of the attributes listed above. Each attribute has sublevels 

(e.g., functional classification has two sublevels of freeway and non-freeway), and hence a 

combination of attributes has different sublevel combinations. The Level 1 traffic inputs of 

PTR sites belonging to a combination of sublevels are averaged. For example, the VCD 

traffic inputs for the combination of functional class and development type (2-way 

combination) can be seen in Table 3-7.

Table 3-4 Possible combination of attributes when chosen two at a time

Attribute 1 Attribute 2

Functional Class Road Type

Functional Class Number of Lanes

Functional Class Commercial AADT

Functional Class COHS

Functional Class Development Type

Functional Class VCD Level

Road Type Number of Lanes

Road Type Commercial AADT

Road Type COHS

Road Type Development Type

Road Type VCD Level

Number of Lanes Commercial AADT

Number of Lanes COHS

Number of Lanes Development Type

Number of Lanes VCD Level

Commercial AADT COHS

Commercial AADT Development Type

Commercial AADT VCD Level

COHS Development Type

COHS VCD Level

Development Type VCD Level

Note: There are 21 2-way attribute combinations (based on 7C2=21).
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Table 3-5 Possible combination of attributes when chosen three at a time

Attribute 1 Attribute 2 Attribute 3

Functional Class Road Type Number of Lanes

Functional Class Road Type Commercial AADT

Functional Class Road Type COHS

Functional Class Road Type Development Type

Functional Class Road Type VCD Level

Functional Class Number of Lanes Commercial AADT

Functional Class Number of Lanes COHS

Functional Class Number of Lanes Development Type

Functional Class Number of Lanes VCD Level

Functional Class Commercial AADT COHS

Functional Class Commercial AADT Development Type

Functional Class Commercial AADT VCD Level

Functional Class COHS Development Type

Functional Class COHS VCD Level

Functional Class Development Type VCD Level

Road Type Number of Lanes Commercial AADT

Road Type Number of Lanes COHS

Road Type Number of Lanes Development Type

Road Type Number of Lanes VCD Level

Road Type Commercial AADT COHS

Road Type Commercial AADT Development Type

Road Type Commercial AADT VCD Level

Road Type COHS Development Type

Road Type COHS VCD Level

Road Type Development Type VCD Level

Number of Lanes Commercial AADT COHS

Number of Lanes Commercial AADT Development Type

Number of Lanes Commercial AADT VCD Level

Number of Lanes COHS Development Type

Number of Lanes COHS VCD Level

Number of Lanes Development Type VCD Level

Commercial AADT COHS Development Type

Commercial AADT COHS VCD Level

Commercial AADT Development Type VCD Level

COHS Development Type VCD Level

Note: There are 35 3-way combinations (based on 7C3=35)

Table 3-6 Possible combination of attributes when chosen four at a time

Attribute 1 Attribute 2 Attribute 3 Attribute 4

Functional Class Road Type Number of Lanes Commercial AADT

Functional Class Road Type Number of Lanes COHS

Functional Class Road Type Number of Lanes Development Type

Functional Class Road Type Number of Lanes VCD Level

Functional Class Road Type Commercial AADT COHS

Functional Class Road Type Commercial AADT Development Type

Functional Class Road Type Commercial AADT VCD Level

Functional Class Road Type COHS Development Type

Functional Class Road Type COHS VCD Level

Functional Class Road Type Development Type VCD Level

Functional Class Number of Lanes Commercial AADT COHS
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Table 3-6 Possible combination of attributes when chosen four at a time (cont’d…)

Attribute 1 Attribute 2 Attribute 3 Attribute 4

Functional Class Number of Lanes Commercial AADT Development Type

Functional Class Number of Lanes Commercial AADT VCD Level

Functional Class Number of Lanes COHS Development Type

Functional Class Number of Lanes COHS VCD Level

Functional Class Number of Lanes Development Type VCD Level

Functional Class Commercial AADT COHS Development Type

Functional Class Commercial AADT COHS VCD Level

Functional Class Commercial AADT Development Type VCD Level

Functional Class COHS Development Type VCD Level

Road Type Number of Lanes Commercial AADT COHS

Road Type Number of Lanes Commercial AADT Development Type

Road Type Number of Lanes Commercial AADT VCD Level

Road Type Number of Lanes COHS Development Type

Road Type Number of Lanes COHS VCD Level

Road Type Number of Lanes Development Type VCD Level

Road Type Commercial AADT COHS Development Type

Road Type Commercial AADT COHS VCD Level

Road Type Commercial AADT Development Type VCD Level

Road Type COHS Development Type VCD Level

Number of Lanes Commercial AADT COHS Development Type

Number of Lanes Commercial AADT COHS VCD Level

Number of Lanes Commercial AADT Development Type VCD Level

Number of Lanes COHS Development Type VCD Level

Commercial AADT COHS Development Type VCD Level

Note: There are 35 4-way combinations (based on 7C4=35)

Table 3-7 VCD traffic inputs for the combination of functional class and development type

Sublevel Sublevel VC4 VC5 VC6 VC7 VC8 VC9 VC10 VC11 VC12 VC13

Freeway Rural 1.6 14.8 3.5 0.4 4.1 62.4 6.7 1.3 0.6 4.7

Freeway Urban 1.5 18.4 5.1 0.8 5.4 55.7 6.1 1.3 0.6 5.0

Non-freeway Rural 2.3 25.0 4.7 0.9 6.1 40.8 7.4 0.8 0.4 11.5

Non-freeway Urban 0.8 18.8 4.7 0.7 5.1 49.8 11.2 1.8 0.3 6.8

Pairwise Euclidean distances between each sublevel combinations were calculated to identify 

the combination of attributes that show different traffic patterns. Pairwise distances for the 

sublevel combinations in Table 3-7 are shown in Table 3-8. 

Table 3-8 Pairwise Euclidean distances between the sublevel combinations

Sublevel combination Freeway_Rural Freeway_Urban Non-freeway_Rural Non-freeway_Urban

Freeway_Rural 0.0 8.0 24.9 14.2

Freeway_Urban 8.0 0.0 17.6 8.0

Non-freeway_Rural 24.9 17.6 0.0 12.6

Non-freeway_Urban 14.2 8.0 12.6 0.0
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The maximum distance between the sublevel combinations increases with the increase in the 

number of attributes used for grouping. However, higher the number of attributes used for 

grouping, lower is the number of PTR locations in each sublevel combinations. For example, 

in Table 3-9, the total number of sublevel combinations should have been 12 [Road type (4) x 

VCD Level (3)]; however, due to a limited number of PTR locations, only 7 sublevel 

combinations exist. When three attributes are chosen (see Table 3-10), only 10 out of a 

possible 18 sublevel combinations exist. Similarly, when four attributes are chosen (see 

Table 3-11), only 14 out of a possible 72 sublevel combinations exist and many of them have 

only one or two PTR locations. Hence it is more appropriate to use only two attribute 

combinations to form road groups for developing Level 2B inputs. 

Table 3-9 Number of PTR locations in each sublevel combination (2-way) for road type/ 

VCD level combination

Road type VCD level Number of PTR locations

'Divided (partial or no access control)' Low VC9 2

'Freeway (full access control)' High VC9 10

'Freeway (full access control)' Low VC9 6

'Freeway (full access control)' Medium VC9 15

'Two travel lanes with center left turn lane' Medium VC9 1

'Two-way undivided (any number of lanes)' Low VC9 4

'Two-way undivided (any number of lanes)' Medium VC9 3

Table 3-10 Number of PTR locations in each sublevel combination (3-way) for road type/ 

development type/VCD level combination

Number of lanes Development type VCD level Number of PTR locations

Four Rural Medium VC9 1

Three Rural High VC9 1

Three Rural Medium VC9 2

Three Urban High VC9 1

Three Urban Medium VC9 2

Two Rural High VC9 8

Two Rural Low VC9 11

Two Rural Medium VC9 11

Two Urban Low VC9 1

Two Urban Medium VC9 3

The next step is to obtain the pairwise distances between sublevel combinations and 

identifying the missing ones for each attribute combination. The descriptive statistics for 

these distances for each two-way combination of attributes (all 7 attributes and 21 

combinations), the number of missing sublevel combinations, combinations with only one
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PTR site are listed in Table 3-12 for VCD. Similar data for other traffic inputs can be found 

in Appendix A. 

Table 3-11 Number of PTR locations in each sublevel combination (4-way) for road 

type/number of lanes/ development type/VCD level combination

Road type
Number 

of lanes

Development 

type
VCD level

Number of 

PTR 

locations

Divided (partial or no access control) Two Rural Low VC9 2

Freeway (full access control) Four Rural Medium VC9 1

Freeway (full access control) Three Rural High VC9 1

Freeway (full access control) Three Rural Medium VC9 2

Freeway (full access control) Three Urban High VC9 1

Freeway (full access control) Three Urban Medium VC9 2

Freeway (full access control) Two Rural High VC9 8

Freeway (full access control) Two Rural Low VC9 5

Freeway (full access control) Two Rural Medium VC9 8

Freeway (full access control) Two Urban Low VC9 1

Freeway (full access control) Two Urban Medium VC9 2

Two travel lanes with center left turn lane Two Urban Medium VC9 1

Two-way undivided (any number of lanes) Two Rural Low VC9 4

Two-way undivided (any number of lanes) Two Rural Medium VC9 3

After careful evaluation of the results, the following attribute combinations are chosen based 

on the availability of the sublevel combinations and the distances between them. The traffic 

data of all the PTR sites in each of the sublevel combinations (road groups) for the attributes 

chosen are averaged to obtain the Level 2B inputs. Figure 3-13 shows the averages of road 

groups for various traffic inputs.

a) Hourly distribution factors: VCD Level and Development Type

The attributes of VCD level and development type resulted in six groups for HDF as shown 

in Figure 3-13(a). The sites having low VC9 levels in the urban areas have the highest peak 

among all other groups between 8:00 am and 4:00 pm suggesting local traffic patterns. The 

sites in this group are state routes with AADTT of less than 1300. Sites having high VC9 

levels have the flattest peaks in both urban and rural areas suggesting long haul traffic 

patterns.  All the sites in high VC9 groups are on interstate routes. 

b) Monthly adjustment factors: Commercial AADT and Development Type

The attributes of commercial AADT and development type resulted in six groups of inputs 

for MAFs as shown in Figure 3-13(b) & (c). Almost all the groups have similar MAF 

patterns for VC5 except for sites with low AADTT in the rural areas suggesting seasonal 
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Figure 3-13 Group averages (Level 2B) for various traffic inputs

c) Vehicle class distribution: VCD Level and Development Type

The attributes of VCD level and development type resulted in six groups for VCD as shown 

in Figure 3-13(d). Since the attribute used is VCD level, three distinct patterns can be seen 

with varying levels of VC9 irrespective of the development type. All the sites in high VC9 

groups are located on the interstates while most of the sites in low VC9 groups are located on 

state routes. Sites in the medium VC9 groups have a mix of both intestates and state routes in 

rural and urban areas.

(a) HDF (b) MAF (VC 5)
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Figure 3-14 Group averages (Level 2B) for various traffic inputs

The attributes of COHS and development type resulted in six groups for SALS as shown in 

Figure 3-14(a). For all the sites in different groups, the first peak occurs at approximately 4-6 

kips while the second peak occurs at 8-10 kips. Road groups in the urban areas have almost 

equal proportion of axles in the 4-6 kip range and the 8-10 kip range while the sites in the 

rural areas have higher proportion of 4-6 kip axles than 8-10 kip axles. The road group of 

regional corridor in the urban area has only one site on US-2 with a unique loading pattern.

e) Tandem Axle Load Spectra: Number of Lanes and Development Type

The attributes of number of lanes and development type resulted in five groups for TALS as 

shown in Figure 3-14 (b). The two peaks seem to correspond to unloaded (9-14 kips) and 

loaded (30-33 kips) tandem axles. Other characteristics could not be established for the 

groups as they have varying functional classifications and AADTT levels and also due to the 

fact that some groups only have one site.

(a) SALS (b) TALS
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f) Tridem Axle Load Spectra: COHS and Development Type

The attributes of COHS and development type resulted in six groups for TRALS as shown in 

Figure 3-14 (c). The general trend of the tridem axle groups appears to be a large proportion 

of light axles around 12 kips followed by a peak value around 40-45 kips. All the sites in the 

national corridors are located on interstates while the sites on regional and statewide 

corridors are on state routes with varying AADTT levels irrespective of the development 

type. 

g) Quad Axle Load Spectra: COHS and Development Type

The attributes of COHS and development type resulted in six groups for QALS as shown in 

Figure 3-14 (d). Again, all the sites in national corridors are on the interstates while the sites 

on regional and statewide corridors are on state routes with varying AADTT levels 

irrespective of the development type. 
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Table 3-12 Descriptive Statistics of the pairwise distances between the sublevel combinations for various attribute combinations (VCD)

Attribute 1 Attribute 2

Pairwise Euclidean distances between 

sublevel combinations

the 
Sublevel combinations

Max Min Avg. Std. Range Total Available

With only 

one PTR 

location

Missing

VCD Level Development Type 50.0 1.5 26.5 15.1 48.5 6 6 0 0

Commercial AADT Development Type 46.8 1.9 21.3 11.9 44.9 6 6 0 0

COHS Development Type 28.3 2.9 18.0 7.1 25.4 6 6 1 0

Road Type Development Type 27.7 4.8 17.6 6.8 22.9 6 6 3 0

Functional Class Development Type 25.9 4.8 17.2 7.4 21.1 4 4 0 0

Functional Class VCD Level 50.4 6.7 25.5 14.4 43.7 6 5 0 1

Number of Lanes Development Type 41.6 4.3 19.0 16.1 37.3 6 5 2 1

Functional Class Commercial AADT 40.2 5.4 21.1 11.5 34.8 6 5 0 1

Functional Class COHS 28.7 8.0 15.9 6.7 20.7 6 5 0 1

COHS VCD Level 54.5 2.5 23.0 13.2 52.1 9 7 1 2

Commercial AADT VCD Level 50.3 1.9 24.3 14.3 48.4 9 7 0 2

Commercial AADT COHS 42.0 4.2 22.0 11.9 37.9 9 7 1 2

Road Type COHS 28.7 2.1 16.1 7.7 26.7 9 7 3 2

Functional Class Number of Lanes 28.0 6.9 15.8 7.8 21.2 6 4 1 2

Road Type VCD Level 56.1 7.6 25.3 14.0 48.5 9 6 0 3

Number of Lanes VCD Level 53.2 1.7 23.9 14.7 51.4 9 6 1 3

Road Type Commercial AADT 42.7 5.4 21.0 10.9 37.3 9 6 0 3

Number of Lanes Commercial AADT 42.3 1.1 18.1 11.0 41.1 9 6 1 3

Functional Class Road Type 23.1 9.7 17.8 7.2 13.5 6 3 0 3

Road Type Number of Lanes 28.8 6.9 16.4 7.5 22.0 9 5 1 4

Number of Lanes COHS 26.1 5.5 14.9 7.0 20.6 9 5 1 4

Note: Shaded cells indicate the selected attribute combination for generation of Level 2B inputs
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3.3 SUMMARY

This chapter discussed the permanent traffic recorder (PTR) data collection and processing 

for developing traffic input defaults for the Pavement-ME. Site-specific traffic inputs (Level 

1) were generated for each of the 41 WIM sites using the PrepME software after applying 

QC checks. Development of Level 2 inputs is crucial when site-specific data are not 

available. The averages from clusters or groups with similar traffic characteristics can be 

used as Level 2 data (2). The average of all the sites (statewide average) can be used as Level 

3 data. Level 3 data are further divided into Levels 3A, and 3B, where 3A represents average 

traffic inputs of freeways and non-freeways, and 3B represents overall statewide average for 

traffic inputs. Two approaches were used to develop Level 2 traffic inputs (a) cluster 

analyses (i.e., improved existing approach) and (b) traditional approaches (simplified 

methodology).

The advantages of cluster analyses are that the groups are formed objectively (based on a 

mathematical function) and not subjected to bias or subjective decisions. In addition, it finds 

patterns in the data that are not intuitively obvious therefore providing new insights into 

traffic patterns in a region. One main disadvantage is the lack of guidelines on establishing 

the optimal number of clusters. While various techniques were developed to identify the 

optimal number of clusters, none of them are perfect and have their drawbacks. The other 

disadvantage is that, since clustering is purely a mathematical technique, the sites in a cluster 

might not have the same identifiable attributes making the assignment of data from a new 

location to the existing clusters difficult. The Euclidean distance and Ward’s method were 

used as the similarity measure and the linkage method, respectively to cluster the traffic data. 

‘Calinski-Harbasz Criterion’ and ‘Gap Criterion’ methods , and engineering judgements were 

used to determine the optimal number of clusters for each traffic input. The inputs developed 

using this methodology are identified as ‘Level 2A’ inputs in this report.

Traditional approaches are more subjective and involve grouping roads that are expected to 

behave similarly (i.e., similar traffic patterns). Attributes of the roadways (e.g., road class 

freeway vs. non-freeway) can be used to identify groups that have similar traffic patterns. 

Such groups based on these attributes are easy to interpret by the users. A minimum of three 

to six groups are required, but more groups may be appropriate if significant regional 

differences exist (3). The advantages of this methodology are that the creation of groups is 

intuitive, and the short-term count from a new site can be used to assign it to an existing 

group. The drawback of this process is that it is not entirely objective (involves a lot of 

subjective decisions which may not explain the variability of traffic patterns within a group). 

Also, the challenge lies in identifying a combination of attributes that can be used to group 

the PTR locations. The traffic patterns at the PTR locations should be similar within a group 

and should be different between the groups. An automated process was developed to help 

identify such combinations of attributes. The inputs developed using this methodology are 

called ‘Level 2B’ inputs in this report.
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The traffic input levels developed in this study are listed below. 

a. Level 1 – Site-specific inputs 

b. Level 2A – Averages of clusters based on cluster analyses 

c. Level 2B – Averages of groups based on roadway characteristics (attributes) 

d. Level 3A – Averages of groups based on freeway and non-freeway road class 

e. Level 3B – Statewide averages

Table 3-13 lists the number of clusters and road groups formed that could be used as Level 2 

traffic inputs.

Table 3-13 Number of clusters and road groups formed for Level 2 inputs

Input

Number of 

clusters 

(Level 2A)

Road groups 

(Level 2B)

Hourly distribution factors (HDF) 5 6

Monthly adjustment factors (MAF) based on VC 5 4 6

MAF based on VC9 5 6

Vehicle class distribution (VCD) 5 6

Single axle load spectra (SALS) 4 6

Tandem axle load spectra (TALS) 5 5

Tridem axle load spectra (TRALS) 6 6

Quad axle load spectra (QALS) 3 6
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CHAPTER 4 - SIGNIFICANT TRAFFIC INPUTS

In Chapter 3, the Pavement-ME traffic inputs were generated for Levels 1, 2A, 2B, 3A and 

3B. Level 1 inputs should always be used for design purposes wherever possible as it is the 

actual traffic data specific to the site. When Level 1 inputs are unavailable, Level 2 or Level 

3 inputs need to be used. The results of the sensitivity analyses based on statistical 

significance and maximum life difference should be used to decide on the appropriate traffic 

input level. The primary purpose of sensitivity analyses is to identify if the traffic defaults 

developed based on clustering (Level 2A inputs) or road grouping (Level 2B inputs) 

techniques would provide significantly different pavement life predictions. The statewide 

defaults (Level 3A or 3B inputs) would suffice for some of the traffic inputs for which the 

Level 2 inputs do not have a significant impact on pavement design outcomes. The steps 

involved in sensitivity analyses include establishing base designs, performance criteria and 

other input parameters in the Pavement-ME and then evaluating the impact of Levels 2 and 3 

traffic inputs. 

The impact of Level 2 inputs on pavement designs can be evaluated in two ways:

Option 1: Changing one input at a time to Level 2 and keeping all other inputs at Level 1, this 

sensitivity analyses is referred to as Option 1. 

Option 2: Changing one input at a time to Level 2 and keeping all other inputs at Level 3, this 

sensitivity analyses is referred to as Option 2.

In Option 1, the impact of input Level 2 is relative to site-specific traffic characteristics (i.e., 

Level 1). On the other hand, in Option 2 the effect of Level 2 is relative to the statewide 

traffic characteristics (i.e., Level 3). Option 2 will isolate the impact of a single traffic input 

because only one traffic input was changed to Level 2 and all other inputs were kept at Level 

3. Option 1 is more realistic since site-specific traffic data are used except for the Level 2 

input for each WIM location. However, Option 2 was included since the most States have 

adopted such approaches.

4.1 SENSITIVITY ANALYSES – OPTION 1 

Table 4-1 contains the baseline flexible pavement design used for the sensitivity analyses. 

Material inputs used in these designs were as per MDOT guidance. The Pavement-ME 

Version 2.3 was used for the sensitivity analysis. For both the flexible and rigid pavements, 

locally calibrated performance models were used  with only one climate station in Lansing 

(1, 2) (see Appendix B). The pavement design life was assumed 20 years with 95% design 

reliability. For each of the 41 WIM locations, the HMA surface layer thickness was designed 

to achieve a 20-year design life for bottom-up fatigue cracking threshold of 20% for flexible 

pavements since it typically controls the designs. Level 1 inputs were used in this process. 

For these designs, the rut depth values at the end of 20 years were also recorded. Table 4-2 

presents the baseline rigid pavement design used for the sensitivity analyses. For each of the 

41 WIM locations, the slab thickness was designed to achieve a 20-year design life for IRI
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threshold of 172 inches/mile since it controls the designs for rigid pavements. Faulting and 

transverse cracking values were also recorded at the end of 20 years.

For both the flexible and rigid pavement designs, one traffic input was changed at a time to 

appropriate cluster or road groups for the site of the PTR. (Levels 2A and 2B) to determine 

the effect of that input on the design life. Levels 3A and 3B inputs for each design (one input 

at a time) were also tested in the Pavement-ME to determine their impact on the design life. 

The time for the distress values (for Levels 2 and 3) to reach the threshold values in the Level 

1 designs were documented. The differences in design lives between different inputs levels 

were quantified for further analyses.

Table 4-1 Baseline designs for flexible pavements

Layer/Detail Elastic Modulus (psi) Thickness (in)

Asphalt Estimated by the Pavement-ME Variable

'

cf

Aggregate base (A-1-a) 33000 6

Sand subbase-A-1-b 20000 18

Sandy clay subgrade-A4 4400 Semi-Infinite

Climate Lansing, MI



Table 4-2 Baseline designs for rigid pavements

Layer/Detail Elastic Modulus (psi) Thickness (in)

JPCP 5600 ( ) Variable

Open graded base (A-1-a) 33000 6

Sand subbase (A-1-b) 20000 10

Sandy clay roadbed (A-6) 4400 Semi-Infinite

Joint spacing 15 ft.

Dowel bar diameter 1.25 in (<10in) 1.5in (=>10in)

Climate Lansing, MI

Many statistical analyses can be performed to understand the characteristics of a data set and 

differences between datasets. Statistical analyses could detect differences in the datasets, but 

the differences might not have much practical significance or vice versa. Statistically, 

significant differences can be found even with minimal differences between datasets of 

considerable size. That is, a statistical significance of the results does not always imply 

practical consequence. Hence in addition to finding the likelihood of a value (significance 

value ‘ ’)  outside the 95% confidence interval (CI), the maximum life difference (MLD) 

values between two input levels were also adopted as an indicator of the variability in the 

data. The MLD is the maximum difference in life between traffic input levels among the PTR 

locations. Table 4-3 lists the criteria used to determine the impact (sensitivity) of the 

difference between traffic inputs and correspondingly select the proper input level needed for 

the design. These designations will be used to measure each traffic characterization 

performance against site-specific values and to determine its impact on life differences.
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Table 4-3 Impact designation on predicted pavement performance

Designation of Impact Maximum Life Difference (MLD) in years

Significant MLD > 5

Moderate 2 < MLD < 5

Negligible MLD < 2

4.1.1 Level 2A Sensitivity Analyses

A one way analysis of variance (ANOVA) can be used when to determine the statistical 

differences in the means of two or more groups (3). If the p-value is less than 0.05 (i.e., 95% 

confidence level), at least one group is different from the others. Additionaly, multiple 

comparisons can be made to identify which group means are different from others. One way 

ANOVA was performed on the absolute life differences (|LifeLevel 1 - LifeLevel 2A|) to detect 

the differences between the clusters for each traffic input. Table 4-4 and Figure 4-1 show the 

results of the ANOVA for Level 2A VCD clusters for flexible pavements. Since the p-value 

is below 0.05, the results indicate that at least two of the cluster averages are statistically 

different from each other. The multiple compariosn (Tukey’s test) results show that clusters 2 

and 4 are different from each other and that their use in pavement design would result in 

statistically different design lives [see Figure 4-1(b)]. More details on the interpretation of 

ANOVA can be found in the reference (3). However, it does not indicate whether the 

differences are of practical significance. Figure 4-2 presents the differences in predicted 

performance for flexible pavements with the use of different VCD Level 2A clusters for each 

WIM location. Each plot is divided into three regions (negligible, moderate and significant) 

based on the MLD categories presented in Table 4-3. Figure 4-2(a) shows the WIM locations 

in VCD Cluster 1 and the life differences when Cluster 1 VCD values are used in the 

Pavement-ME as compared to Level1 VCD inputs for each WIM location. Note that all the 

other traffic input values are at Level 1. Similar tables and figures for other traffic inputs can 

be found in Appendix C.

Table 4-4 ANOVA results for Level 2A VCD clusters for flexible pavements 

(bottom-up fatigue cracking) 

Source DF Adj SS Adj MS F-value p-value 

VCD Cluster 4 9.454 2.3634 2.78 0.041 

Error 36 30.599 0.85 

Total 40 40.052 

VCD Cluster N Mean StDev 95% CI

1 7 0.794 0.35 (0.087, 1.501)

2 8 1.834 1.568 (1.173, 2.495)

3 4 1.02 1.193 (0.085, 1.955)

4 9 0.379 0.399 (-0.244, 1.002)

5 13 0.872 0.77 (0.353, 1.390)

DF = degrees of freedom, SS = sum of squares, MS = mean square
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(a) Mean differences between clusters (b) Tukey test results 

Figure 4-1 Mean design life comparisons between different for Level 2A VCD clusters for 

flexible pavements (bottom-up fatigue cracking)

None of the WIM locations in Cluster 1 have ‘moderate’ or ‘significant’ life differences. 

Three VCD clusters result in moderate differences in design life [see Figures 4-2 (b), 4-2 (c), 

and 4-2 (e)]. If there is at least one WIM location in any cluster with a ‘moderate’ or 

‘significant’ life difference, then the cluster was considered sensitive. Similar analyses were 

conducted for other Level 2A inputs and the results can be found in Appendix C. Table 4-5 

summarizes the statistical sensitivity of flexible and JPCP pavements to different traffic 

inputs. The letter ‘Y’ means that the mean design life for at least one cluster is different from 

the other clusters (i.e., statistically or practically sensitive depending on the analysis type) 

whereas an ‘N’ means insensitive. Table 4-6 summarizes the sensitivity of flexible and JPCP 

pavements to different traffic inputs that led to moderate practical significances in the 

Pavement-ME design outcomes.

Table 4-5 Sensitivity of rigid and flexible pavements to statistical significance – Level 2A

Traffic 

input

Flexible pavements Rigid pavements

Rut depth 

(in)

Bottom-up Fatigue 

cracking (%)

IRI 

(in/mile)
Faulting (in)

Transverse 

cracking (%)

VCD Y Y N Y Y

54321
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0.5

0.0

VCD_Clust No
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)

The pooled standard deviation is used to calculate the intervals.

HDF - - N N Y

MAF N N N N Y

SALS N N N N N

TALS N N N N N

TRALS N N N N N

QALS N Y N N N
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(b) Cluster 2

(e) Cluster 5 

Figure 4-2 Differences in flexible pavement life predictions (bottom-up fatigue cracking) for 

Level 2A VCD clusters 

(c) Cluster 3 (d) Cluster 4
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Table 4-6 Sensitivity of rigid and flexible pavements to moderate MLD criteria – Level 2A

Traffic input

Flexible pavements Rigid pavements

Rut depth 

(in)

Bottom up fatigue 

cracking (%)
IRI (in/mile) Faulting (in)

Transverse 

cracking (%)

VCD Y Y N Y Y

HDF - - N N Y

MAF N N N N N

SALS Y Y N N N

TALS Y Y N N Y

TRALS N N N N N

QALS N N N N N

4.1.2 Level 2B Sensitivity Analyses

Similar to the Level 2A sensitivity analyses, one way ANOVA was performed on the 

absolute life difference data (|LifeLevel 1 - LifeLevel 2B|) to detect the differences between the 

road groups for each traffic input. Table 4-7 and Figure 4-3 show the results of the ANOVA 

for Level 2B VCD as an example. Since the p-value is above 0.05, the results indicate that 

the group averages are not different from each other and that their use in pavement design 

would not result in statistically different design lives. Table 4-8 summarizes the statistical 

sensitivity of flexible and JPCP pavements to different traffic inputs. However, the maximum 

life difference among the groups needs to evaluated for practical significance.

Table 4-7 ANOVA results for Level 2B groups 

Source DF Adj SS Adj MS F-value p-value 

VCD Groups 5 7.64 1.53 1.54 0.203 

Error 35 34.71 0.99 

Total 40 42.35

VCD Groups N Mean StDev 95% CI 

HighVC9_Rural 8 0.334 0.509 (-0.381, 0.049) 

HighVC9_Urban 2 0.125 0.063 (-1.305, 1.55) 

LowVC9_Rural 10 1.399 1.660 (0.760, 2.038) 

LowVC9_Urban 2 0.080 0.000 (-1.349, 1.509) 

MediumVC9_Rural 7 0.987 0.536 (0.223, 1.751) 

MediumVC9_Rural 10 0.698 0.761 (0.115, 1.282)
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(a) Mean differences between clusters

(b) Tukey test results 

Figure 4-3 Mean design life comparisons between different clusters for VCD

Table 4-8 Sensitivity of rigid and flexible pavements to statistical significance – Level 2B

Traffic input

Flexible pavements Rigid pavements

Rut depth (in)
Bottom up fatigue 

cracking (%)
IRI (in/mile) Faulting (in)

Transverse 

cracking (%)

VCD N N N N N

HDF - - Y N Y

MAF N N N N N

SALS N Y N Y N

TALS N N N N
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Figure 4-4 presents the differences in predicted performance in flexible pavements with the 

use of different Level 2B groups for each WIM location. Similar to Figure 4-2, each plot is 

divided into three regions (negligible, moderate and significant) based on the MLD values in 

Table 4-3. Figure 4-4(a) shows the WIM locations in the road group with high VC9 levels in 

a rural area, and the life differences when that road group values are used in the Pavement 

ME. Note that all the other traffic input values are at Level 1. None of the WIM locations in 

this road group have ‘moderate’ or ‘significant’ life differences. However, three other road 

groups resulted in moderate to significant differences in design life [see Figures 4-4 (c), 4-4 

(e), and 4-4 (f)]. Note that if there is at least one WIM location in any road group with a 

‘moderate’ or ‘significant’ life difference, then that road group was deemed sensitive. Similar 

analyses were conducted for other Level 2B inputs, and results are shown in Appendix C. 

Table 4-9 summarizes the sensitivity to moderate life differences of flexible and JPCP 

pavements to different traffic inputs.
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(a) High VC9 and Rural 
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(e) Medium VC9 and Rural (f) Medium VC9 and Urban 

(b) High VC9 and Urban

Figure 4-4 Differences in flexible pavement life predictions (bottom-up fatigue cracking) 

for Level 2B VCD road groups 

(c) Low VC9 and Rural (d) Low VC9 and Urban
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Table 4-9 Sensitivity of rigid and flexible pavements to moderate MLD criteria – Level 2B

Traffic input

Flexible pavements Rigid pavements

Rut depth (in)
Bottom up fatigue 

cracking (%)
IRI (in/mile) Faulting (in)

Transverse 

cracking (%)

VCD Y Y N Y Y

HDF - - N N Y

MAF N N N N N

SALS N Y N N N

TALS Y Y N N Y

TRALS N N N N N

NFF
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2.0

1.5

1.0
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)

The pooled standard deviation is used to calculate the intervals.

QALS N N N N N

4.1.3 Level 3A Sensitivity Analyses

Level 3A has two road groups for all traffic inputs, i.e., freeways and non-freeways. The 

procedure used for Level 2A and 2B sensitivity analyses was followed. Since there are only 

two groups, a one way ANOVA or a two-sample t-test could be used to find the differences 

between the two sets. Table 4-10 and Figure 4-5 show the results of the ANOVA for Level 

3A VCD. Since the p-value is below 0.05, the results indicate that the group averages are 

different from each other and that their use in pavement design would result in statistically 

different design lives.

Table 4-10 ANOVA results for Level 3A VCD clusters or groups 

Source DF Adj SS Adj MS F-value p-value 

Class 1 8.075 8.0753 10.67 0.002 

(a) Mean differences between clusters (b) Tukey test results 

Figure 4-5 Mean design life comparisons between different clusters for VCD

Error 39 29.529 0.7571 

Total 40 37.604

Class N Mean StDev 95% CI 

F 31 0.6735 0.442 (0.3574, 0.9897) 

NF 10 1.707 1.622 (1.150, 2.264)
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Figure 4-6 presents the differences in predicted performance in flexible pavements (bottom-

up cracking) with the use of different Level 3A groups for each WIM location. Figure 4-6(a) 

shows the WIM locations in freeway VCD group and the life differences when freeway VCD 

group values are used in the Pavement-ME. Only one WIM location in the freeway VCD 

group has ‘moderate’ life difference. Moderate to significant differences can be seen for 

WIM locations in the non-freeway VCD group [Figure 4-6(b)]. Table 4-11 summarizes the 

statistical sensitivity of flexible and JPCP pavements to different traffic inputs for Level 3A. 

Table 4-12 summarizes the sensitivity to maximum life differences of flexible and JPCP 

pavements to different traffic inputs.

(b) Non-freeway cluster 

Figure 4-6 Differences in flexible pavement life predictions (bottom-up fatigue cracking) for 

Level 3A VCD groups

(a) Freeway cluster



72

Table 4-11 Sensitivity of rigid and flexible pavements to statistical significance – Level 3A

Traffic 

Input

Flexible pavements Rigid pavements

Rut depth 

(in)

Bottom-up fatigue 

cracking (%)

IRI 

(in/mile)
Faulting (in)

Transverse 

cracking (%)

VCD Y Y N N N

HDF - - N N N

MAF N N N N Y

SALS N Y N N N

TALS N Y N Y N

TRALS N Y N N N

QALS N N N N N

Table 4-12 Sensitivity of rigid and flexible pavements to MLD criteria – Level 3A

Traffic 

Input

Flexible pavements Rigid pavements

Rut depth (in)
Bottom-up fatigue 

cracking (%)

IRI 

(in/mile)

Faulting 

(in)

Transverse 

cracking (%)

VCD Y Y N Y Y

HDF - - N N Y

MAF N N N N Y

SALS N Y N N Y

TALS Y N N N Y

TRALS N N N N N

QALS N N N N N

4.1.4 Choosing the Appropriate Traffic Input Level

As mentioned before, Level 1 traffic inputs should always be used for pavement design if 

available. In the absence of Level 1 inputs, use either Level 2 or Level 3 inputs. The results 

of the sensitivity analyses based on statistical significance and maximum life difference 

should be used to decide on the appropriate traffic input level. The criteria used in this 

evaluation is that the traffic input levels are sensitive if the life difference is moderate (> 2 

years). The recommendations for each traffic input are as follows:

4.1.4.1 Vehicle class distribution

The statistical sensitivity analyses show that the use of different VCD clusters (Level 2A) 

would result in statistically different design lives for both flexible and rigid pavements (see 

Table 4-5). This observation is also valid for MLD sensitivity analyses. The results indicate 

the existence of localized traffic patterns that would yield different pavement thicknesses in 

the design process. While the statistical analyses do not show that Level 2B inputs would 

result in statistically different design lives for both flexible and rigid pavements, the MLD 

criteria indicate that the use of Level 2B inputs would result in moderate life differences.  

Hence, for VCD, either Level 2A or 2B inputs could be used in the absence of Level 1 

inputs. The next step is to identify if there are any statistical differences between Levels 2A 

and 2B. If there are no differences between the two levels, then Level 2B can be used since it
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will simplify the VCD input selection process. A paired t-test was used to verify if there are 

significant differences between the values of (|LifeLevel 1 - LifeLevel 2A |) and (|LifeLevel 1 - 

LifeLevel 2B|). Table 4-13 shows the results based on the paired t-test for various traffic inputs. 

It can be seen from the table that there is a statistical difference between Levels 2A and 2B 

for rut depth in flexible pavements. 

However, the differences in design lives for flexible pavements in terms of rutting between 

the Levels 2A and 2B are practically insignificant (mean difference) although statistically 

significant as shown in Table 4-14. Further, the number of times the pavement sections are 

overdesigned or under designed when using Levels 2A and 2B were calculated. Figure 4-7 

shows the number of under designed are higher for Level 2A compared to Level 2B. The 

descriptive statitistics for design differences for all traffic inputs can be seen in Appendix D. 

A pavement at a WIM location will be overdesigned when the difference is design lives 

(LifeLevel 1 - LifeLevel x) is positive and under designed when the difference (LifeLevel 1 - 

LifeLevel x) is negative. While a positive life difference would suggest increasing the 

thicknesses making the project overdesigned, a negative life difference will force to reduce 

the thicknesses making the project under-designed relative to Level 1. 

Table 4-13 Summary of statistical significance – Levels 2A vs. 2B

Traffic 

input

Flexible pavements Rigid pavements

Rut depth 

(in)

Bottom up fatigue 

cracking (%)

IRI 

(in/mile)

Faulting 

(in)

Transverse 

cracking (%)

VCD Y N N N N

HDF - - Y N Y

MAF N N N N N

SALS N N N N N

TALS N N Y Y N

TRALS N N N N N

QALS N N N N N

Table 4-15 and 4-16 show the results of the sensitivity analyses between Levels 2A and 3A, 

2B and 3A, respectively based on the paired t-test for various traffic inputs. It can be seen 

from Table 4-16 that there are statistical differences between Levels 2B and 3A. Therefore, 

Level 2B inputs are recommended for VCD for both flexible and rigid pavements.

Table 4-14 Paired t-test results between Levels 2A and 2B for rutting

Sample N Mean StDev SE Mean

Ldiff_Rut_2B 41 0.929 1.134 0.177

Ldiff_Rut_2A 41 1.179 1.08 0.169

Mean StDev SE Mean 95% CI

-0.25 0.762 0.119 (-0.491, -0.009)

t-value p-value

-2.1 0.042
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(a) Rutting (b) Fatigue cracking 

Figure 4-7 Number of over and under-designed PTR locations — Levels 2A and 2B (VCD)

Table 4-15 Summary of statistical significance – Levels 2A vs. 3A

Traffic input

Flexible Pavements Rigid Pavements

Rut depth 

(in)

Bottom-up fatigue 

cracking (%)
IRI (in/mile)

Faulting 

(in)

Transverse 

cracking (%)

VCD N N Y Y Y

HDF - - N N Y

MAF N N N N N

SALS N N N N N

TALS Y Y Y Y Y

TRALS N N N N N

QALS N N Y Y N

Table 4-16 Summary of statistical significance – Levels 2B vs. 3A

Traffic input

Flexible pavements Rigid pavements

Rut depth 

(in)

Bottom-up fatigue 

cracking (%)
IRI (in/mile) Faulting (in)

Transverse 

cracking (%)

VCD Y Y

0 5 10 15 20

Level 2B

Level 2A

Normal design Overdesigned Underdesigned

Y

0 5 10 15 20

Level 2B

Level 2A

Normal design Overdesigned Underdesigned

Y Y

HDF - - Y N Y

MAF N N N N N

SALS N N N N N

TALS N N N N N

TRALS N N N N N

QALS N N N N N

4.1.4.2 Hourly distribution factors

Level 2A HDF inputs have shown to have a statistically significant impact on the design 

rigid pavement designs compared to Level 2B inputs (see Table 4-13). Note that the HDF 

inputs are only used in rigid pavement design process. However, the differences in design 

lives for rigid pavements in terms of IRI and transverse cracking between the Levels 2A and 

2B are very insignificant (0.04 and 0.9 years) from a practical standpoint as shown in Table 

4-17. Figure 4-8 shows that Level 2A is slightly better with the number of undersigned PTR 

locations for transverse cracking. However, note that predicted cracking levels are less than 



75

5% at 20 years for all the 41 PTR locations; therefore, the difference of 0.9 years between 

Levels 2A and 2B may not be of any practical significance. Hence, Level 2B is 

recommended for HDF.

Table 4-17 Paired t-test results between Levels 2A and 2B for HDF (IRI and transverse 

cracking)

Sample N Mean StDev SE Mean

Ldiff_IRI_2B 41 0.071 0.0764 0.0119

Ldiff_IRI_2A 41 0.0324 0.0906 0.0142

0 10 20 30 40

Level 2B
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Difference
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0.04

Sample N Mean StDev SE Mean

Ldiff_Crack_2B 41 2.539 1.909 0.298

Ldiff_Crack_2A

(c) Faulting 

Figure 4-8 Number of over and under-designed PTR locations — Levels 2A and 2B (HDF)

4.1.4.3 Monthly adjustment factors

No statistical differences in design lives between Level 2A clusters or 2B road groups were 

observed for both flexible and rigid pavements based on sensitivity analyses (see Table 4-

13). Based on Figure 4-9, Level 2B should be chosen because of similar number of PTR 

locations with under designed PTR locations. It can be seen from Table 4-16 that there are no 

statistically significant differences between Levels 2B and 3A. The next step is to identify if 

there are any statistical differences between Levels 3A and 3B. If there are no differences 

between the two levels, then Level 3B can be used because it is more simplified. Table 4-18 

shows the results of the sensitivity analyses between Levels 3A and 3B based on the paired t-

41 1.624 1.591 0.248

Difference 0.9

(a) IRI (b) Transverse cracking
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test for various inputs. Since there are statistically significant differences between Levels 3A 

and 3B, Level 3A inputs are recommended for MAF for both flexible and rigid pavements.

0 10 20 30 40

Level 2B

Level 2A (VC5)

Normal design Overdesigned Underdesigned

0 5 10 15 20 25

Level 2B

Level 2A (VC5)

Normal design Overdesigned Underdesigned

0 5 10 15 20 25 30

Level 2B

Level 2A (VC5)

Normal design Overdesigned Underdesigned

(e) Rigid pavement (faulting) 

Figure 4-9 Number of over and underdesigned PTR locations — Levels 2A and 2B (MAF)

4.1.4.4 Axle load spectra

For single axle load spectra, no differences were observed between Levels 2A and 2B (see 

Table 4-13) for both flexible and rigid pavements. Based on Figure 4-10, there are almost 

equal number of under-designed PTR locations for Levels 2A and 2B. Hence, Level 2B 

inputs should be used because it is more simplified. Also, since there are no differences 

between Levels 2B and 3A (see Table 4-16), and a difference exists between Levels 3A and 

3B (see Table 4-17), Level 3A can be used for single axle load spectra.

(c) Rigid pavement (IRI) (d) Rigid pavement (transverse cracking)

(a) Flexible pavements (rutting) (b) Flexible pavements (fatigue cracking)
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Table 4-18 Summary of statistical significance – Levels 3A vs. 3B

Traffic input

Flexible pavements Rigid pavements

Rut depth (in)
Bottom up fatigue 

cracking (%)
IRI (in/mile) Faulting (in)

Transverse 

cracking (%)

VCD N N N N N

HDF - - N N N

MAF N N N N Y

SALS N N N N Y

TALS N N N N Y

TRALS N N N N N

QALS N N Y Y N

For tandem axle load spectra, some differences were observed between Levels 2A and 2B 

(see Table 4-13) for both flexible and rigid pavements. Based on Figure 4-11, Level 2A is 

slightly better with the number of undersigned PTR locations for IRI and faulting. However, 

the differences in design lives (see Tables 4-19 4-20) for rigid pavements in terms of IRI and 

faulting between the Levels 2A and 2B are very insignificant (0.07 and 0.28 years) from a 

practical standpoint. Hence Level 2B inputs can be chosen over Level 2A inputs because it is 

more simplified.

Table 4-19 Paired t-test results between Levels 2A and 2B for TALS (IRI)

Sample N Mean StDev SE Mean

Ldiff_IRI_2B 41 0.1585 0.1356 0.0212

Ldiff_IRI_2A 41 0.0907 0.0919 0.0143

Difference 0.07

Mean StDev SE Mean 95% CI for

0.0678 0.1701 0.0266 (0.0141, 0.1215)

t-value p-value

2.55 0.015

Table 4-20 Paired t-test results between Levels 2A and 2B for TALS (Faulting)

Sample N Mean StDev SE Mean

Ldiff_Fault_2B 41 0.6015 0.4855 0.0758

Ldiff_Fault_2A 41 0.3256 0.2336 0.0365

Difference 0.28

Mean StDev SE Mean 95% CI

0.2759 0.5126 0.0801 (0.1140, 0.4377)

t-value p-value

3.45 0.001

For tridem and quad axle load spectra, no differences were observed between Levels 2A and 

2B (see Table 4-13) for both flexible and rigid pavements. In addition, there are no 

differences between Levels 2B and 3A (See Table 4-16). However, there are difference 

between Levels 3A and 3B for quad axle load spectra. Therefore, Levels 3A are 

recommended for both tridem and quad axle load spectra.
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Figure 4-10 Number of over and under-designed PTR locations — Levels 2A and 2B (SALS)

(d) Rigid pavement (transverse cracking)
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Figure 4-11 Number of over and under-designed PTR locations — Levels 2A and 2B (TALS)

(d) Rigid pavement (transverse cracking)
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4.2 SENSITIVITY ANALYSES – OPTION 2 

The sensitivity analysis was performed to evaluate the impact of Level 2 traffic inputs on 

pavement design lives predicted by the Pavement-ME. The impact of Level 2 inputs were 

evaluated by changing one input at a time to Level 2 and keeping all other at Level 3A. Since 

Level 3A inputs are based on freeways and non-freeways, two base designs were used for the 

sensitivity analyses as shown in Tables 4-21 and 4-22. 

Table 4-21 Baseline designs for flexible pavements

Layer
Layer thickness, inches

Freeways Non-Freeways

HMA top course 2 1.5

HMA leveling course 3 2

HMA base course 3.5 3

Non-stabilized GAB 6 6

Sand subbase 18 18

Sandy clay subgrade Semi-infinite Semi-infinite

Table 4-22 Baseline designs for rigid pavements

Layer
Layer thickness, inches

Freeways Non-freeways

PCC 11 8

Non-stabilized GAB 6 6

Sand subbase 10 10

Sandy clay subgrade Semi-infinite Semi-infinite

For each of the base designs, the AADTT values were changed to achieve a 20-year design 

life for bottom-up fatigue cracking (20%) for flexible pavements. As a reference, Level 3A 

inputs were used in this process. Table 4-23 shows the AADTT values that provide a 20-year 

design in terms of bottom-up fatigue cracking in flexible pavements. Similarly, for rigid 

pavements, the AADTT values were changed to achieve a 20-year design life for an IRI of 

172 inch/mile (see Table 4-24). This normalizes the dataset to the determining threshold for 

design. The thresholds for design of flexible and rigid pavements were determined based on 

the criteria most likely to control the design.

Table 4-23 AADTT and predicted distress and IRI at 20-years design life

Pavement type

Design lane 

AADTT 20-

year design life

IRI 

(in/mi)

Total 

rutting 

(in.)

AC rutting 

(in.)

Bottom-up 

fatigue 

cracking 

(%)

Top-down 

fatigue 

cracking 

(ft/mile)

AC 

thermal 

cracking 

(ft/mile)

Freeway-flexible 850 145.6 0.4 0.4 20.0 1269.6 345.7

Non-freeway - 

flexible
188 139.9 0.3 0.3 20.0 1591.1 349.4
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Table 4-24 AADTT and predicted distress and IRI at 20-year design life

Pavement type

Design lane 

AADTT 20-year 

design life

IRI 

(in/mi)

Mean joint 

faulting 

(in)

JPCP transverse 

cracking (percent 

slabs)

Freeway- rigid 525 172.9 0.1 0.7

Non-freeway - rigid 500 172.4 0.0 2.9

Once the baseline designs are established, one input at a time were changed to Level 2 

keeping all the other inputs at Level 3A. The time it takes for the pavement sections to reach 

the threshold limit of 20 percent bottom-up fatigue cracking for flexible pavements and 172 

inch/mile IRI for rigid pavements were determined.

4.2.1 Level 2A Sensitivity Analyses

4.2.1.1 Vehicle Class Distribution 

Tables 4-25 and 4-26 demonstrate the results of the sensitivity analysis of five VCD clusters 

(Level 2A) inputs. Since the percent difference in design life is less than 2 years for both 

freeways and non-freeways and for all clusters, it can be concluded that VCD clusters have 

little to no practical effect on the design life and Level 3A inputs will suffice for VCD for 

flexible and rigid pavement designs.

Table 4-25 Effects of VCD Level 2A inputs on flexible pavements performance

Clusters
Years to 

failure

IRI 

(in/mi)

Total 

rutting 

(in.)

AC 

rutting 

(in.)

Bottom-

up fatigue 

cracking 

(%)

Top-

down 

fatigue 

cracking 

(ft/mile)

AC 

thermal 

cracking 

(ft/mile)

% 

Difference 

in design 

life

Freeway-Flexible-

Baseline
20.0 145.60 0.43 0.4 20.0 1,270 345.7 -

Cluster 1 20.7 145.30 0.43 0.4 19.9 1,275 345.7 3%

Cluster 2 18.9 146.10 0.44 0.4 20.4 1,340 345.7 -5%

Cluster 3 20.0 145.30 0.43 0.4 20.0 1,296 345.7 0%

Cluster 4 20.0 145.80 0.43 0.4 20.0 1,240 345.7 0%

Cluster 5 20.1 145.60 0.43 0.4 20.0 1,263 345.7 0%

Non-Freeway - 

Flexible-Baseline
20.0 139.90 0.34 0.3 20.0 1,591 349.4 -

Cluster 1 21.8 139.40 0.33 0.3 19.6 1,551 349.4 9%

Cluster 2 19.9 140.10 0.34 0.3 20.1 1,621 349.4 0%

Cluster 3 20.9 139.50 0.33 0.3 19.7 1,562 349.4 5%

Cluster 4 20.8 139.90 0.34 0.3 19.9 1,559 349.4 4%

Cluster 5 20.9 139.70 0.33 0.3 19.7 1,559 349.4 5%
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Table 4-26 Effects of VCD Level 2A inputs on rigid pavements performance

Clusters
Years to 

failure

IRI 

(in/mi)

Mean 

joint 

faulting 

(in)

JPCP transverse 

cracking (percent 

slabs)

% 

Difference 

in design 

life

Freeway- rigid-baseline 20 172.9 0.1 0.7 -

Cluster 1 20.25 171.6 0.1 0.7 1.3%

Cluster 2 20.17 172.0 0.1 0.7 0.9%

Cluster 3 20.67 170.2 0.1 0.7 3.4%

Cluster 4 19.58 174.4 0.1 0.7 -2.1%

Cluster 5 19.92 173.0 0.1 0.7 -0.4%

Non-freeway-rigid-baseline 20 172.4 0.0 2.9 -

Cluster 1 20.08 172.0 0.0 2.6 0.4%

Cluster 2 20 172.6 0.0 3.0 0.0%

Cluster 3 20.25 171.3 0.0 3.0 1.3%

Cluster 4 19.67 173.9 0.0 2.5 -1.6%

Cluster 5 19.83 172.9 0.0 2.5 -0.9%

4.2.1.2 Monthly Adjustment Factors (MAF)

Table 4-27 presents the results of the sensitivity of the Pavement-ME outcomes to MAF 

clusters. Since the percent difference in design life is less than 10 percent for both freeways 

and non-freeways, it can be concluded that MAF clusters for Class 5 have little to no 

practical effect on the design life and Level 3A inputs will suffice for MAF for flexible 

pavement designs. Note that Level 3A was used in option 2 based on the results of option 1 

sensitivity analysis.

Table 4-27  Effect of MAF Level 2A inputs (VC5) on flexible pavements performance

Clusters
Years to 

failure

IRI 

(in/mi)

Total 
rutting 

(in.)

AC 
rutting 

(in.)

Bottom-

up 
fatigue 

cracking 

(%)

Top-

down 
fatigue 

cracking 

(ft/mile)

AC 
thermal 

cracking 
(ft/mile)

% 
Difference 

in design 
life

Freeway-flexible-baseline 20.0 146 0.43 0.40 20.0 1,270 346 -
Cluster 1 20.0 146 0.43 0.41 20.0 1,271 346 0.0%

Cluster 2 20.1 146 0.43 0.40 20.0 1,269 346 0.4%

Cluster 3 19.1 146 0.44 0.42 20.3 1,289 346 -4.6%

Cluster 4 19.9 146 0.44 0.41 20.1 1,273 346 -0.4%

Non-freeway - flexible-

baseline
20.0 140 0.34 0.31 20.0 1,591 349 -

Cluster 1 20.2 140 0.34 0.31 19.9 1,586 349 0.8%

Cluster 2 20.4 140 0.33 0.30 19.9 1,586 349 2.1%

Cluster 3 19.8 140 0.34 0.31 20.2 1,603 349 -1.3%

Cluster 4 20.0 140 0.34 0.31 20.0 1,586 349 0.0%

Similarly, the percent difference in design life is less than 10 percent for both freeways and 

non-freeways for the five MAF clusters based on VC9 (see Table 4-28). It can be concluded 

that variation in MAF clusters for Class 9 have little to no practical effect on the design life 

and Level 3A inputs will suffice for MAF for flexible pavement designs.
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Table 4-28  Effect of MAF Level 2A inputs (VC9) on flexible pavements performance

Clusters

Years 

to 

failure

IRI 

(in/mi)

Total 

rutting 

(in.)

AC 

rutting 

(in.)

Bottom-

up 

fatigue 

cracking 

(%)

Top-

down 

fatigue 

cracking 

(ft/mile)

AC 

thermal 

cracking 

(ft/mile)

% 

Difference 

in design 

life

Freeway-flexible-baseline 20.0 146 0.43 0.40 20.0 1,270 346 -
Cluster 1 20.1 146 0.43 0.40 20.0 1,269 346 0.4%

Cluster 2 20.0 146 0.43 0.41 20.0 1,275 346 0.0%

Cluster 3 19.2 146 0.44 0.42 20.3 1,292 346 -4.2%

Cluster 4 19.9 146 0.43 0.41 20.1 1,273 346 -0.4%

Cluster 5 20.8 145 0.42 0.40 19.8 1,251 346 4.2%

Non-freeway - flexible-baseline 20.0 140 0.34 0.31 20.0 1,591 349 -
Cluster 1 20.3 140 0.33 0.31 19.9 1,585 349 1.7%

Cluster 2 20.1 140 0.34 0.31 19.9 1,588 349 0.4%

Cluster 3 19.8 140 0.34 0.31 20.2 1,608 349 -0.9%

Cluster 4 20.1 140 0.34 0.31 20.0 1,588 349 0.4%

Cluster 5 21.0 139 0.33 0.30 19.7 1,557 349 5.0%

Similarly, the effect of MAF on predicted rigid pavement performance was evaluated (see 

Tables 4-29 and 4-30). Based on the analysis results, the percent difference in design life is 

equal to zero for both freeways and non-freeways for all clusters. It can be concluded that 

MAF clusters have little to no practical effect on the design life and Level 3A inputs will 

suffice for MAF for rigid pavement designs.

Table 4-29 Effect of MAF Level 2A inputs (VC5) on rigid pavements performance

Clusters
Years to 

failure

IRI 

(in/mi)

Mean 

joint 

faulting 

(in)

JPCP trans. 

cracking 

(percent 

slabs)

% Difference in 

design life

Freeway- rigid-baseline 20.0 172.9 0.06 0.72 -

Cluster 1 20.0 172.8 0.06 0.72 0%

Cluster 2 20.0 172.9 0.06 0.72 0%

Cluster 3 20.0 172.8 0.06 0.72 0%

Cluster 4 20.0 172.8 0.06 0.72 0%

Non-freeway-rigid-baseline 20.0 172.4 0.04 2.91 -
Cluster 1 20.0 172.4 0.04 2.91 0%

Cluster 2 20.0 172.4 0.04 2.91 0%

Cluster 3 20.0 172.6 0.04 2.96 0%

Cluster 4 20.0 172.5 0.04 2.96 0%
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Table 4-30 Effect of MAF Level 2A inputs (VC9) on rigid pavements performance

Clusters

Years 

to 

failure

IRI 

(in/mi)

Mean joint 

faulting (in)

JPCP 

transverse 

cracking 

(percent slabs)

% Difference in 

design life

Freeway- rigid-baseline 20.0 172.9 0.06 0.72 -

Cluster 1 20.0 172.8 0.06 0.72 0.0%

Cluster 2 20.0 172.8 0.06 0.72 0.0%

Cluster 3 20.0 172.9 0.06 0.72 0.0%

Cluster 4 20.0 172.9 0.06 0.72 0.0%

Cluster 5 19.9 173.3 0.06 0.72 -0.4%

Non-freeway-rigid-baseline 20.0 172.4 0.04 2.91 -

Cluster 1 20.0 172.4 0.04 2.91 0.0%

Cluster 2 20.0 172.4 0.04 2.91 0.0%

Cluster 3 20.0 172.6 0.04 2.96 0.0%

Cluster 4 20.0 172.5 0.04 2.96 0.0%

Cluster 5 20.0 172.4 0.04 2.82 0.0%

4.2.1.3 Hourly Distribution Factors (HDF)

The effect of five Level 2 HDF clusters on the Pavement-ME rigid pavement design was 

investigated. Based on the analysis results, the percent difference in design life is equal to 

zero (see Table 4-31) for all clusters and for both freeways and non-freeways. It can be 

concluded that HDF clusters have little to no practical effect on the design life and Level 3A 

inputs will suffice for HDF for rigid pavement designs.

Table 4-31 Effect of HDF Level 2A inputs on rigid pavements performance

Clusters
Years to 

failure

IRI 

(in/mi)

Mean joint 

faulting (in)

JPCP transverse 

cracking (percent 

slabs)

% Difference 

in design life

Freeway-rigid-baseline 20.0 172.9 0.06 0.72 -

Cluster 1 20.0 172.9 0.06 0.72 0.0%

Cluster 2 20.0 172.9 0.06 0.72 0.0%

Cluster 3 20.0 172.9 0.06 0.72 0.0%

Cluster 4 20.0 172.9 0.06 0.72 0.0%

Cluster 5 20.0 172.9 0.06 0.96 0.0%

Non-freeway-rigid-baseline 20.0 172.4 0.04 2.91 -

Cluster 1 20.0 172.5 0.04 3.05 0.0%

Cluster 2 20.0 172.5 0.04 2.96 0.0%

Cluster 3 20.0 172.5 0.04 3.05 0.0%

Cluster 4 20.0 172.4 0.04 2.87 0.0%

Cluster 5 20.0 172.6 0.04 3.18 0.0%

4.2.1.4 Axle Load Spectra (ALS)

The effect of Level 2A clusters on pavement performance was evaluated in terms of predicted 

pavement service life using the baseline designs. Four single and five tandem Level 2A ALS 

cluster inputs were tested. The results are presented in Table 4-32. Since the percent difference 

in design life is less than 10 percent for both freeways and non-freeways, it can be concluded
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that single ALS clusters have little to no practical effect on the design life and Level 3A ALS 

would suffice for pavement designs.

Table 4-32 Effect of single ALS Level 2A inputs on flexible pavements performance

Clusters
Years to 

failure

IRI 

(in/mi)

Total 

rutting 
(in.)

AC rutting 

(in.)

Bottom-up 
fatigue 

cracking 

(%)

Top-down 
fatigue 

cracking 

(ft/mile)

AC 
thermal 

cracking 

(ft/mile)

% 

Difference in 
design life

Freeway-flexible-

baseline
20.0 146 0.43 0.40 20.0 1,270 346 -

Cluster 1 19.9 146 0.43 0.41 20.0 1,270 346 -0.4%

Cluster 2 19.4 146 0.43 0.41 20.2 1,270 346 -2.9%

Cluster 3 19.8 146 0.43 0.40 20.1 1,270 346 -0.8%

Cluster 4 20.1 146 0.43 0.40 20.0 1,270 346 0.4%

Non-freeway - 

flexible-baseline
20.0 140 0.34 0.31 20.0 1,591 349 -

Cluster 1 20.9 140 0.34 0.31 19.7 1,591 349 4.6%

Cluster 2 20.4 140 0.34 0.31 19.9 1,591 349 2.1%

Cluster 3 21.0 140 0.33 0.30 19.7 1,591 349 5.0%

Cluster 4 21.1 140 0.34 0.31 19.7 1,591 349 5.4%

Similarly, the percent difference in design life was less than 10 percent for both freeways and 

non-freeways for the 5 tandem ALS clusters. It can be concluded that tandem ALS clusters 

have little to no practical effect on the design life and Level 3A ALS defaults would suffice 

for MDOT (see Table 4-33).

Table 4-33 Effect of tandem ALS Level 2A inputs on flexible pavement performance

Clusters
Years 

to 

failure

IRI 

(in/mi)

Total 
rutting 

(in.)

AC 
rutting 

(in.)

Bottom-

up fatigue 

cracking 
(%)

Top-down 

fatigue 

cracking 
(ft/mile)

AC 

thermal 

cracking 
(ft/mile)

% 

Difference 

in design 
life

Freeway-flexible-baseline 20 146 0.43 0.40 20.0 1,270 346 -
Cluster 1 19.8 146 0.44 0.41 20.2 1,281 346 -1.3%

Cluster 2 19.2 146 0.44 0.41 20.3 1,289 346 -4.2%

Cluster 3 21.0 145 0.42 0.40 19.7 1,247 346 5.0%

Cluster 4 21.1 145 0.42 0.40 19.7 1,246 346 5.4%

Cluster 5 19.3 146 0.44 0.41 20.3 1,288 346 -3.8%

Non-freeway -flexible-baseline 20.0 140 0.34 0.31 20.0 1,591 349 -
Cluster 1 20.3 140 0.34 0.31 19.9 1,586 349 1.3%

Cluster 2 19.9 140 0.34 0.31 20.0 1,596 349 -0.4%

Cluster 3 21.3 139 0.33 0.30 19.6 1,551 349 6.3%

Cluster 4 21.8 139 0.33 0.30 19.6 1,542 349 8.8%

Cluster 5 20.1 140 0.34 0.31 20.0 1,590 349 0.4%

Similarly, the effect of single and tandem ALS Level 2A clusters on pavement performance 

was evaluated for rigid pavements. All pavement scenarios tested failed due to high IRI. 

However, the effect of loading on IRI deterioration was negligible and factors other than 

loading (initial IRI, joint spalling, age, freezing conditions, and soil type) were responsible 

for IRI deterioration. Faulting or cracking predictions were minor. The results are presented 

in Tables 4-34 and 4-35. Since the percent difference in design life is less than 10 percent for 

both single and tandem ALS for freeways and non-freeways, it can be concluded that ALS 
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clusters have little to no practical effect on the design life and Level 3A will suffice for single 

and tandem ALSs for rigid pavements. The tridem and quad axle load spectra did not show 

any effect on the design life differences and are not presented in the results. 

Table 4-34 Effect of single ALS Level 2A inputs on rigid pavement performance

Clusters
Years to 

failure

IRI 

(in/mi)

Mean joint 

faulting 

(in)

JPCP transverse 

cracking (percent 

slabs)

% Difference in 

design life

Freeway- rigid-baseline 20 172.9 0.06 0.7 -

Cluster 1 20 172.8 0.06 0.7 0.0%

Cluster 2 20 173.0 0.06 0.7 0.0%

Cluster 3 20.1 172.4 0.06 0.7 0.4%

Cluster 4 20 172.9 0.06 0.7 0.0%

Non-freeway-rigid-baseline 20 172.4 0.04 2.9 -

Cluster 1 20.1 172.1 0.04 2.5 0.4%

Cluster 2 20 172.4 0.04 2.9 0.0%

Cluster 3 20.17 171.8 0.04 2.4 0.9%

Cluster 4 20 172.3 0.04 2.5 0.0%

Table 4-35 Effect of tandem ALS Level 2A inputs on rigid pavement performance

Clusters
Years to 

failure

IRI 

(in/mi)

Mean joint 

faulting (in)

JPCP transverse 

cracking (percent 

slabs)

% Difference 

in design life

Freeway- rigid-baseline 20 172.9 0.06 0.7 -

Cluster 1 19.92 173.2 0.06 0.7 -0.4%

Cluster 2 19.75 173.7 0.06 0.7 -1.3%

Cluster 3 20.2 172.0 0.06 0.7 0.9%

Cluster 4 20.3 171.6 0.06 0.7 1.6%

Cluster 5 19.67 174.1 0.06 0.7 -1.6%

Non-freeway-rigid-baseline 20 172.4 0.04 2.9 -

Cluster 1 20.0 172.2 0.04 2.9 0.0%

Cluster 2 20 172.5 0.04 2.9 0.0%

Cluster 3 20.17 171.7 0.04 2.8 0.9%

Cluster 4 20.25 171.4 0.04 2.8 1.3%

Cluster 5 19.92 172.6 0.04 2.9 -0.4%

4.2.2 Level 2B Sensitivity Analyses

4.2.2.1 Vehicle Class Distribution

Tables 4-36 and 4-37 show the results of the sensitivity analysis for six VCD Level 2B inputs 

for flexible and rigid pavements, respectively. Since the percent difference in design life is 

more than 10 percent for at least one of the groups (low VC9 and urban), it can be concluded 

that Level 2B VCD inputs have practical effect on the design life and should be used for 

flexible pavement designs.
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Table 4-36 Effect of VCD Level 2B inputs on flexible pavement performance

Groups
Years to 
failure

IRI 
(in/mi)

Total 

rutting 

(in.)

AC 

rutting 

(in.)

Bottom-
up 

fatigue 

cracking 
(%)

Top-
down 

fatigue 

cracking 
(ft/mile)

AC 

thermal 
cracking 

(ft/mile)

% 

Difference 
in design 

life

Freeway-flexible-baseline 20.0 145.6 0.43 0.4 20.0 1,270 345.7 -

Medium VC9_Rural 19.9 145.7 0.43 0.4 20.1 1,274 345.7 -0.4%

High VC9_Rural 19.9 145.8 0.44 0.4 20.1 1,245 345.7 -0.4%

High VC9_Urban 19.8 145.9 0.44 0.4 20.1 1,258 345.7 -0.9%

Low VC9_Rural 19.2 145.9 0.44 0.4 20.3 1,327 345.7 -4.1%

Low VC9_Urban 21.8 144.6 0.42 0.4 19.5 1,246 345.7 9.1%

Medium VC9_Urban 20.3 145.4 0.43 0.4 19.9 1,271 345.7 1.3%

Non-freeway-flexible-baseline 20.0 139.9 0.34 0.3 20.0 1,591 349.4 -

Medium VC9_Rural 20.8 139.8 0.34 0.3 19.8 1,568 349.4 4.1%

High VC9_Rural 20.8 139.9 0.34 0.3 19.9 1,563 349.4 3.8%

High VC9_Urban 20.2 140.0 0.34 0.3 20.0 1,577 349.4 0.9%

Low VC9_Rural 20.0 140.0 0.34 0.3 20.0 1,603 349.4 0.0%

Low VC9_Urban 23.2 138.8 0.32 0.3 19.1 1,504 349.4 15.9%

Medium VC9_Urban 21.80 139.6 0.33 0.3 19.7 1,559 349.4 9.0%

Table 4-37 Effect of VCD Level 2B inputs on rigid pavement performance

Groups Years to failure
IRI 

(in/mi)

Mean 

joint 

faulting 

(in)

JPCP transverse 

cracking (percent 

slabs)

% Difference 

in design life

Freeway-rigid-baseline 20 172.9 0.1 0.7 -

Medium VC9_Rural 19.8 172.9 0.1 2.0 -1.0%

High VC9_Rural 19.5 174.5 0.1 2.0 -2.5%

High VC9_Urban 19.4 174.6 0.1 2.0 -2.9%

Low VC9_Rural 20.3 171.5 0.1 2.0 1.3%

Low VC9_Urban 20.67 170.0 0.1 2.0 3.4%

Medium VC9_Urban 20 172.4 0.1 2.0 0.0%

Non-freeway-rigid-baseline 20 172.4 0.0 2.9 -

Medium VC9_Rural 19.8 173.3 0.0 5.2 -1.0%

High VC9_Rural 19.6 174.2 0.0 5.0 -2.1%

High VC9_Urban 19.6 174.4 0.0 5.0 -2.1%

Low VC9_Rural 19.9 172.7 0.0 5.8 -0.4%

Low VC9_Urban 20.3 171.1 0.0 4.9 1.6%

Medium VC9_Urban 19.9 172.9 0.0 5.1 -0.4%

4.2.2.2 Monthly Adjustment Factors (MAF)

Table 4-38 presents the results of the sensitivity of the Pavement-ME outcomes to MAF 

Level 2B inputs. Since the percent difference in design life is less than 10 percent for both 

freeways and non-freeways, it can be concluded that MAF Level 2B inputs have little to no 

practical effect on the pavement design life and Level 3A inputs (statewide defaults) will 

suffice for MAF for flexible pavement designs.
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Table 4-38 Effect of MAF Level 2B inputs on flexible pavement performance

Groups

Years 

to 

failure

IRI 
(in/mi)

Total 

rutting 

(in.)

AC 

rutting 

(in.)

Bottom-
up 

fatigue 

cracking 
(%)

Top-
down 

fatigue 

cracking 
(ft/mile)

AC 

thermal 
cracking 

(ft/mile)

% 

Difference 
in design 

life

Freeway-flexible-baseline 20.0 146 0.43 0.40 20.0 1,270 346 -

AADTT One_Rural 19.9 146 0.44 0.41 20.1 1,277 346 -0.4%

AADTT One_Urban 20.0 146 0.43 0.41 20.0 1,275 346 0.0%

AADTT Two_Rural 20.1 146 0.43 0.40 20.0 1,267 346 0.4%

AADTT Two_Urban 20.1 146 0.43 0.40 20.0 1,271 346 0.4%

AADTT Three_Rural 20.0 146 0.43 0.40 20.0 1,268 346 0.0%

AADTT Three_Urban 20.1 146 0.43 0.40 20.0 1,271 346 0.4%

Non-freeway-flexible-baseline 20.0 140 0.34 0.31 20.0 1,591 349 -

AADTT One_Rural 20.0 140 0.34 0.31 20.0 1,590 349 0.0%

AADTT One_Urban 20.1 140 0.34 0.31 20.0 1,591 349 0.4%

AADTT Two_Rural 20.5 140 0.33 0.30 19.9 1,583 349 2.5%

AADTT Two_Urban 20.3 140 0.34 0.31 19.9 1,588 349 1.3%

AADTT Three_Rural 20.8 140 0.33 0.30 19.9 1,578 349 3.8%

AADTT Three_Urban 20.2 140 0.34 0.31 20.0 1,591 349 0.9%

Similarly, the effect of MAF on rigid pavement performance was evaluated. Based on the 

analysis results, the percent difference in design life is less than 1 percent for both freeways 

and non-freeways for all Level 2B MAF inputs (see Table 4-39). It can be concluded that 

Level 2B MAF inputs have little to no practical effect on the design life and Level 3A inputs 

will suffice for MAF for rigid pavement designs.

Table 4-39 Effect of MAF Level 2B inputs on rigid pavement performance

Groups
Years to 

failure

IRI 

(in/mile)

Mean 

Joint 

faulting 

(in.)

JPCP 

transverse 

cracking 

(percent 

slabs)

% Difference 

in design life

Freeway-rigid-baseline 20.0 172.9 0.06 0.72 -

AADTT One_Rural 19.9 172.8 0.06 2.03 -0.4%

AADTT One_Urban 19.9 172.7 0.06 2.03 -0.4%

AADTT Two_Rural 19.8 172.9 0.06 2.03 -0.9%

AADTT Two_Urban 19.8 173.0 0.06 2.03 -0.9%

AADTT Three_Rural 19.8 172.9 0.06 2.03 -0.9%

AADTT Three_Urban 19.9 172.9 0.06 2.03 -0.4%

Non-freeway-rigid-baseline 20.0 172.4 0.04 2.91 -

AADTT One_Rural 19.9 172.9 0.04 5.66 -0.4%

AADTT One_Urban 19.9 172.9 0.04 5.66 -0.4%

AADTT Two_Rural 19.9 172.9 0.04 5.66 -0.4%

AADTT Two_Urban 19.9 172.9 0.04 5.66 -0.4%

AADTT Three_Rural 19.9 172.9 0.04 5.62 -0.4%

AADTT Three_Urban 19.8 172.9 0.04 5.66 -0.9%

4.2.2.3 Hourly Distribution Factors (HDF)

The effect of Level 2B HDF inputs on rigid pavement performance was investigated. Based 

on the analysis results, the percent difference in design life is less than 1 percent for Level 2B
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HDF inputs and for both freeways and non-freeways (see Table 4-40). It can be concluded 

that Level 2B HDF inputs have no practical effect on the design life and Level 3A HDF 

inputs will suffice for rigid pavement designs.

Table 4-40 Effect of HDF Level 2B inputs on rigid pavement performance

Groups
Years to 

failure

IRI 

(in/mile)

Mean 

Joint 

faulting 

(in.)

JPCP 

transverse 

cracking 

(percent 

slabs)

% Difference 

in design life

Freeway-rigid-baseline 20.0 172.9 0.06 0.72 -

High VC9_Rural 19.8 173.0 0.06 2.45 -0.9%

High VC9_Urban 19.8 173.0 0.06 2.45 -0.9%

Low VC9_Rural 19.8 172.9 0.06 2.03 -0.9%

Low VC9_Urban 19.8 172.9 0.06 2.03 -0.9%

Medium VC9_Rural 19.8 172.9 0.06 2.03 -0.9%

Medium VC9_Urban 19.8 172.9 0.06 2.03 -0.9%

Non-freeway-rigid-baseline 20.0 172.4 0.04 2.91 -

High VC9_Rural 19.8 173.1 0.04 6.03 -0.9%

High VC9_Urban 19.8 173.1 0.04 6.03 -0.9%

Low VC9_Rural 19.9 172.9 0.04 5.66 -0.4%

Low VC9_Urban 19.9 172.9 0.04 5.57 -0.4%

Medium VC9_Rural 19.8 173.0 0.04 5.81 -0.9%

Medium VC9_Urban 19.8 173.0 0.04 5.76 -0.9%

4.2.2.4 Axle Load Spectra (ALS)

The effect of Level 2B inputs on pavement performance was evaluated in terms of predicted 

pavement service lives using the baseline designs. Six single and five tandem Level 2B ALS 

inputs were tested. The results are presented for flexible pavements in Table 4-41. Since the 

percent difference in design life is less than 10 percent for both freeways and non-freeways, 

it can be concluded that single ALS clusters have little to no practical effect on the design life 

and Level 3A ALS defaults would suffice for pavement designs. Similarly, for the tandem 

ALS, the percent difference in design life was less than 10 percent (see Table 4-42) for both 

freeways and non-freeways Level 2B inputs. It can be concluded that tandem ALS Level 2B 

inputs have little to no practical effect on the design life and Level 3A ALS defaults would 

suffice for flexible pavement designs.
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Table 4-41 Effect of single ALS Level 2B inputs on flexible pavements performance

Groups
Years to 
failure

IRI 
(in/mi)

Total 

rutting 

(in.)

AC 

rutting 

(in.)

Bottom-
up 

fatigue 

cracking 
(%)

Top-
down 

fatigue 

cracking 
(ft/mile)

AC 

thermal 
cracking 

(ft/mile)

% 

Difference 
in design 

life

Freeway-flexible-baseline 20 146 0.43 0.40 20.0 1,270 346 -

National Rural 20.2 146 0.43 0.40 19.9 1,270 346 0.9%

National Urban 20.0 146 0.43 0.41 20.0 1,270 346 0.0%

Regional Rural 19.2 146 0.43 0.41 20.3 1,270 346 -4.1%

Regional Urban 19.8 146 0.43 0.40 20.1 1,270 346 -0.9%

Statewide Rural 18.9 146 0.44 0.41 20.4 1,270 346 -5.4%

Statewide Urban 20.0 146 0.43 0.41 20.0 1,270 346 0.0%

Non-freeway-flexible-baseline 20.0 140 0.34 0.31 20.0 1,591 349 -

National Rural 21.4 140 0.33 0.31 19.6 1,591 349 7.1%

National Urban 21.0 140 0.34 0.31 19.7 1,591 349 5.0%

Regional Rural 20.0 140 0.34 0.31 20.0 1,591 349 0.0%

Regional Urban 21.0 140 0.33 0.30 19.7 1,591 349 5.0%

Statewide Rural 19.9 140 0.34 0.31 20.1 1,591 349 -0.4%

Statewide Urban 20.0 142 0.34 0.31 20.0 1,613 350 0.0%

Table 4-42 Effect of tandem ALS Level 2B inputs on flexible pavements performance

Groups
Years to 

failure

IRI 

(in/mi)

Total 
rutting 

(in.)

AC 
rutting 

(in.)

Bottom-

up 
fatigue 

cracking 

(%)

Top-

down 
fatigue 

cracking 

(ft/mile)

AC 

thermal 

cracking 
(ft/mile)

% 

Difference 

in design 
life

Freeway-flexible-baseline 20 146 0.43 0.40 20.0 1,270 346 -

2L Rural 19.9 146 0.43 0.41 20.1 1,277 346 -0.4%

2L Urban 19.9 146 0.43 0.41 20.1 1,277 346 -0.4%

3L Rural 20.1 146 0.43 0.41 20.0 1,268 346 0.4%

3L Urban 20.9 145 0.43 0.40 19.8 1,252 346 4.6%

4L Rural 20.9 145 0.43 0.40 19.8 1,256 346 4.6%

Non-freeway-flexible-baseline 20 140 0.34 0.31 20.0 1,591 349 -

2L Rural 20.7 140 0.34 0.31 19.9 1,581 349 3.4%

2L Urban 20.6 140 0.34 0.31 19.9 1,583 349 2.9%

3L Rural 21.3 140 0.33 0.30 19.6 1,549 349 6.3%

3L Urban 21.3 139 0.33 0.30 19.6 1,552 349 6.3%

4L Rural 21.2 140 0.33 0.30 19.7 1,554 349 5.9%

Similarly, the effect of single and tandem ALS Level 2B inputs on pavement performance 

was evaluated for rigid pavements. The results are presented in Tables 4-43 and 4-44. Since 

the percent difference in design life is less than 10 percent for both single and tandem ALS 

for freeways and non-freeways, it can be concluded that Level 2B inputs have little to no 

practical effect on the design life and Level 3A inputs (statewide defaults) will suffice for 

single and tandem ALSs for rigid pavements. The tridem and quad axle load spectra did 

show any effect on the design life differences and are not presented in the results. 
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Table 4-43 Effect of single ALS Level 2B inputs on rigid pavements performance

Groups Years to failure
IRI 

(in/mi)

Mean 

joint 

faulting 

(in)

JPCP transverse 

cracking (percent 

slabs)

% 

Difference 

in Design 

Life

Freeway-rigid-baseline 20 172.9 0.06 0.7 -

National Rural 19.9 172.9 0.06 2.0 -0.4%

National Urban 19.8 173.0 0.06 2.0 -0.9%

Regional Rural 19.9 172.9 0.06 2.0 -0.4%

Regional Urban 20.0 172.5 0.06 2.0 0.0%

Statewide Rural 19.8 173.2 0.06 2.0 -1.3%

Statewide Urban 19.9 172.9 0.06 2.0 -0.4%

Non-freeway-rigid-baseline 20 172.4 0.04 2.9 -

National Rural 20 172.4 0.04 4.9 0.0%

National Urban 19.9 172.6 0.04 5.0 -0.4%

Regional Rural 19.9 172.9 0.04 5.5 -0.4%

Regional Urban 20.1 172.1 0.04 4.9 0.4%

Statewide Rural 19.8 173.2 0.04 5.9 -0.9%

Statewide Urban 19.9 172.6 0.04 5.2 -0.4%

Table 4-44 Effect of tandem ALS Level 2B inputs on rigid pavements performance

Groups
Years to 

failure

IRI 

(in/mile)

Mean 

Joint 

faulting 

(in.)

JPCP 

transverse 

cracking 

(percent 

slabs)

% Difference 

in design life

Freeway-rigid-baseline 20.0 172.9 0.06 0.72 -

2L Rural 19.8 173.3 0.06 2.03 -1.3%

2L Urban 19.8 173.1 0.06 2.03 -0.9%

3L Rural 19.7 173.8 0.06 2.03 -1.6%

3L Urban 20.0 172.2 0.06 2.03 0.0%

4L Rural 20.1 172.0 0.06 2.03 0.4%

Non-freeway-rigid-baseline 20.0 172.4 0.04 2.91 -

2L Rural 19.9 172.7 0.04 5.62 -0.4%

2L Urban 19.9 172.7 0.04 5.62 -0.4%

3L Rural 20.0 172.5 0.04 5.41 0.0%

3L Urban 20.1 172.2 0.04 5.46 0.4%

4L Rural 20.1 172.1 0.04 5.46 0.4%

4.3 CLUSTER ASSIGNMENT METHODOLOGY

The next step after the generation of clusters and sensitivity analyses is to develop a cluster 

assignment methodology. Cluster assignment methodology (classification technique) usually 

involves developing a classification model which assigns new sites to one of the previously 

developed clusters. Examples of classification techniques include decision tree classifiers, 

discriminant analysis, neural networks, support vector machines, and naïve Bayes classifiers. 

The input data for a classification model includes a data array D as shown in Equation (1). 
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Each row contains a data object, and the columns contain the attribute values and the class 

label of each data object. 

iy

(1) 

where:

 = value of the jth attribute of object i. 

= Class label of the object i

The attribute values (e.g., road class and development type) could be either discrete or 

continuous while the class label (clusters) should always be discrete. All the classification 

techniques use a learning algorithm to identify a model that best fits the relationship between 

the attribute set and the class label of the input data. For this study, the attribute set includes 

various attributes of the PTR locations. The class labels are the pre-defined cluster numbers. 

The models generated by the learning algorithms should fit the input data well and correctly 

predict the clusters of a new PTR location it has never seen before. The general approach in 

developing a model is to have a training set of PTR locations whose cluster numbers are 

known. This training set is used to develop a classification model. This model is then applied 

to test set which consists of PTR locations and their clusters numbers not used by the model. 

Evaluation of any classification model is based on its accurate number predictions of the 

cluster numbers and can be presented in a tabular form called the confusion matrix (see Table 

Number of accurate predictions P P11 22Accuracy = 
Total number of predictions P P P P  11 12 21 22

Error rate =
Number of inaccurate predictions

Total number of predictions

P P12 21

P P P P  11 12 21 22

4-45).   

Table 4-45 Confusion matrix for dataset with two class labels (clusters)

Predicted Class
Confusion matrix

Cluster = 1 Cluster = 2

Actual Cluster = 1 P11 P12

class Cluster = 2 P21 P22

Each element in the diagonal (bolded) are predicted accurately and the non-diagonal 

elements are the inaccurate predictions. One could use a performance metric of a model such 

as accuracy as defined below.

 (2) 

Consequently, the error rate is 

 (3)
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Development Type

Functional Class Functional Class

Urban Rural

Freeway

Cluster 5

Non-

Freeway

Number of Lanes

Two Three

Cluster 1 Cluster 3

Freeway

Cluster 2

Non-

Freeway

COHS

National Regional

Cluster 4 Cluster 3

The error rate of a classification model can be divide into two categories (a) training error, 

and (b) testing error. The training error is the misclassification rate of the model on the 

training records. The testing error is the misclassification rate of the model using the data 

which it has not seen before.  A good classification model should have high accuracy and 

low error rate. 

As previously mentioned, several techniques exist for building a classification model but the 

research team decided to use the decision tree classifiers for its ease of use. An example of a 

decision tree can be seen in Figure 4-12. A decision tree has three types of nodes: (a) a root 

node that has no incoming edges and zero or more outgoing edges (Development type) (b) 

internal nodes, which have exactly one incoming edge and two or more outgoing edges 

(Functional Class), and (c) leaf or terminal nodes, which has exactly on incoming edge and 

no outgoing edges. Each leaf node is assigned the cluster number. Many decision trees can be 

constructed from a given set of attributes. While some of the trees are more accurate than 

others, finding the optimal tree is computationally infeasible. Many algorithms can be used to 

decide on the attribute to be used for partitioning the data but the one most commonly used is 

the Hunt’s algorithm which is the basis of many existing decision tree induction algorithms 

(4).

The advantages of decision trees are that they are easy to understand and interpret. They can 

handle both numerical and categorical data input data and can be used to solve problems with 

multi-class labels (as opposed to certain techniques that can handle only binary class labels). 

Figure 4-12 Example of a decision tree
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However, decision tree classifiers can create long and complex trees that tend to over fit the 

data. A long and complex decision tree (i.e. a tree with more nodes and leaves) have low 

training errors and high testing errors.

To improve the classification accuracy, multiple classifiers can developed and their 

predictions can be aggregated. Such techniques are called ensemble methods. Ensemble 

methods construct multiple classifiers from the training data, predict the class labels and 

picks the one with the one with most predicted class label. One of such techniques used in 

this study is called bagging (also known as bootstrap aggregating). This technique repeatedly 

samples from the data set with replacement. Each sample has the same size as the original 

data and a model is fit to the data. This process was repeated for 500 times. Tables 4-46 and 

4-47 present the training and testing losses for the classification models of HDF and TALS. 

Single decision tree for HDF can be seen in Figure 4-13 while one of the trees built using 

random forests can be seen in Figure 4-14. Similarly, a single decision tree for TALS can be 

seen in Figure 4-15 while one of the trees built using random forests can be seen in Figure 4-

16. Note that the data from only 41 WIM sites are used for the models. Although bagging 

(random forests) techniques are better than a single decision tree, the accuracy cannot be 

improved unless there are more WIM sites or more data are available that describe these 41 

PTR sites better. Only three traffic inputs (VCD, HDF and TALS) need Level 2 inputs based 

on the sensitivity. For Level 2A, classification models are needed to assign a site to clusters. 

It is recommended that for design purposes VCD should be estimated based on the short-term 

counts while classifications trees for HDF and TALS can be used for cluster assignments if 

Level 2A inputs are needed. Due to relatively high misclassification rates, practically 

insignificant difference between Levels 2A and 2B, and ease of use, Level 2B inputs can be 

used for design purposes.

Table 4-46 Training and testing losses for various classification models — HDF

Classification Model Training Loss Testing Loss

Single Tree (entire data) 0.15

Random Forests (entire data) 0.00

Single Tree (75-25 cross validation) 0.19 0.39

Random Forests (75-25 cross validation) 0.00 0.29

Table 4-47 Training and testing losses for various classification models — TALS

Classification Model Training Loss Testing Loss

Single Tree (entire data) 0.22

Random Forests (entire data) 0.00

Single Tree (75-25 cross validation) 0.29 0.41

Random Forests (75-25 cross validation) 0.03 0.33
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VC9 

VC9 

Cluster 5

< 66.35 >= 66.35

< 58.15

VC4

>= 58.15

VC6

< 3.75 >= 3.75

Cluster 1 Cluster 2

Cluster 3

< 1.75

Cluster 4

> = 1.75

Farm Products

<0.55

<9.21

Cluster 1

>=9.21

Farm Products

<12.97 >=12.97

Cluster 2 Cluster 4

<5.45

Cluster 3

>=5.45

Cluster 2 Cluster 4

>=0.55

Cluster 2 

VC9

Cluster 5

VC11

< 66.35 >= 66.35

VC11

< 1.2 >= 1.2

VC6

Farm Products

<17.50 >=17.50

Figure 4-14 Random forests (100th) tree for HDF using entire data

Figure 4-13 Single decision tree for HDF using entire data
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VC7 

VC8 

< 0.75 >= 0.75

< 4.85 >= 4.85

< 0.40 >= 0.40

Cluster 2 Cluster 5

VC4

< 0.03

Cluster 2

> =0.03

< 2.50 >= 2.50

Cluster 3

< 2.25 >= 2.25

Cluster 4 Cluster 1

Food Products

Metallic Ores

Cluster 1

Misc Manufacturing

<7.27

<14

Cluster 2

>=14

Farm Products

<4.74 >=4.74

Cluster 1 Cluster 5

<20.7

Cluster 2

>=20.7

Cluster 3

Cluster 4

>=7.27

VC8

VC9

< 5.05 >= 5.05

< 76.6

>=76.6

VC5

Farm Products

<18.62
>=18.62

<18.97 >=18.97

Cluster 3 Cluster 1

<50.65

Cluster 5

VC9

>=50.65

Cluster 4

Waste Scrap

Farm Products
VC13

Figure 4-16 Random forests (180th) tree for TALS using entire data

Figure 4-15 Single decision tree for TALS using entire data
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4.4 SUMMARY

Five traffic input levels were developed in this study as listed below. 

a. Level 1 – Site-specific inputs 

b. Level 2A – Averages of clusters based on cluster analyses 

c. Level 2B – Averages of groups based on roadway characteristics (attributes) 

d. Level 3A – Averages based on freeway and non-freeway road classes 

e. Level 3B – Statewide averages

Level 1 inputs should always be used for design purposes wherever possible as it is the actual 

traffic data specific to the site. When Level 1 traffic inputs are unavailable, either Levels 2 or 

3 inputs have to be used for pavement designs. The impact of Level 2 inputs on predicted 

pavement performance can be evaluated by using sensitivity analyses. If no differences in the 

predicted performance or pavement lives are observed between Levels 1 and 2 inputs, Level 

3 traffic inputs will suffice for pavement design. The steps involved in sensitivity analyses 

include establishing base designs, performance criteria and other input parameters in the 

Pavement-ME and then evaluating the impact of Levels 2 and 3 traffic inputs.  

For sensitivity analyses, the pavement design life was assumed 20 years with 95% design 

reliability for flexible and rigid pavements. For each of the 41 WIM locations, the HMA 

surface layer thickness was designed to achieve a 20-year design life for bottom-up fatigue 

cracking threshold of 20% for flexible pavements since it is a critical structural distress for 

pavement design. Level 1 inputs were used in this process. For these designs, the rut depth 

values at the end of 20 years were also recorded. In addition, for each of the 41 WIM 

locations, the slab thickness was designed to achieve a 20-year design life for IRI threshold 

of 172 inches/mile for the rigid pavements because it controls most of the designs. Faulting 

and transverse cracking values were also recorded at the end of 20 years. For both the 

flexible and rigid pavement designs, one traffic input was changed at a time to Levels 2A and 

2B to determine their effects on the design lives. Levels 3A and 3B inputs for each design 

(one input at a time) were also used in the Pavement-ME to determine their impact on the 

design lives. The time for the distress values (for Levels 2 and 3) to reach the threshold 

values in the Level 1 designs were documented. The differences in design lives between 

different inputs levels were quantified for further analyses.

Statistical analyses could detect differences between clusters or groups, but the differences 

might not have much practical significance. Hence, in addition to the statistical significance, 

the maximum life difference (MLD) values between two input levels were adopted as an 

indicator of the variability in the data and correspondingly select the proper input level 

needed for the design. One way ANOVA was performed on the absolute life differences 

(|LifeLevel 1 - LifeLevel X|) to detect the differences between the clusters for each traffic input. If 

the p-value is below 0.05, the results indicate that the cluster or group averages are different 

from each other and that their use in pavement design would result in statistically different 

design lives. However, it does not indicate whether the differences are of practical 

significance. The absolute differences in predicted lives were estimated relative to Level 1 

design life of 20 years. The cluster or group was considered sensitive or of practical 
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significance if the absolute life differences of at least one WIM location is higher than two 

years. 

Once the sensitivity of inputs at Levels 2 and 3 was determined, the next step was to identify 

if there are any differences between predicted lives for Levels 2A and 2B. If there are no 

differences between the Levels 2A and 2B, then Level 2B can be used since it will simplify 

the input selection process. A paired t-test was used to verify if there are significant 

differences between the values of (|LifeLevel 1 - LifeLevel 2A |) and (|LifeLevel 1 - LifeLevel 2B|). 

Also, the number of under- and over-designed WIM sites due to the use of Levels 2A and 2B 

inputs were determined. A pavement at a WIM location will be overdesigned when the 

difference in design lives (LifeLevel 1 - LifeLevel x) is positive and under-designed when the 

difference (LifeLevel 1 - LifeLevel x) is negative. While a positive life difference would suggest 

increasing the thicknesses making the project over-designed, a negative life difference will 

force to reduce the thicknesses making the project under-designed relative to Level 1. If there 

were statistically significant differences, either Level 2A or 2B was selected for that traffic 

input after careful evaluation of the average design life differences. If there were no 

differences between Levels 2A and 2B, comparisons were made between Levels 2A and 3A 

or 2B and 3A to see if Level 3A would suffice for pavement designs. Again, if there are no 

differences between Levels 2 and 3A, comparisons were made between Levels 3A and 3B to 

see if Level 3B would suffice for pavement designs. Subsequent to the sensitivity analyses, 

classifications models (decision trees) were developed for cluster assignment. 

The criteria used in this analyses to establish significant traffic inputs are based on 

engineering judgment and local experience. The statistical analyses may not be reliable 

alone; practical significance should always support it. Based on the sensitivity analyses of 

Levels 2A, 2B, 3A, and 3B, it is recommended that for design purposes VCD should be 

estimated based on the short-term counts while classifications trees for HDF and TALS can 

be used for cluster assignments if Level 2A inputs are needed. Due to relatively high 

misclassification rates, practically insignificant difference between Levels 2A and 2B, and 

ease of use, Level 2B inputs can be used for design purposes. The following input levels are 

recommended for each traffic input (see Table 4-48).

Table 4-48 Recommended traffic input levels

Traffic input
Recommended traffic input level

Flexible pavements Rigid pavements

VCD 2B 2B

HDF - 2B

MAF 3A 3A

SALS 3A 3A

TALS 2B 2B

TRALS 3A 3A

QALS 3A 3A



99

CHAPTER 5 - PREPME EVALUATION

5.1 BACKGROUND

The Pavement-ME design (previously MEPDG/DARWin-ME) is a substantial advancement 

in pavement design process. Therefore, it requires many more inputs from various data 

sources. Through the transportation pooled fund study TPF-5(242): Traffic and Data 

Preparation for AASHTO Pavement-ME Analysis and Design, a full-production software 

called PrepME with comprehensive database features was developed to assist state DOTs in 

data preparation and improve the management and workflow of the Pavement-ME design 

input data. Specifically, the PrepME is capable of pre-processing, importing, checking the 

quality of raw Weigh-In-Motion (WIM) traffic data, and generating three traffic input levels 

with in-built clustering analysis methods. This tool can be used not only by pavement design 

engineers to prepare input for the Pavement-ME, but also traffic data collection engineers to 

collect better traffic data and manage those data for other applications. The software has the 

following basic functions with more specific features requested by individual States.

 Imports an agency’s PTR traffic data complying with FHWA Traffic Monitoring 

Guide (TMG) file formats, and stores the data in SQL server local database with 

exceptional computation efficiency. 

 Conducts Travel Monitoring Analysis System (TMAS 2.0) data check during data 

import and generates TMAS check error log for each imported raw file. 

 Performs automatic quality control checks by direction and lane for both 

classification and weight data based on the TMG recommendations. 

 Provides user friendly interfaces to review monthly, weekly and daily traffic data, and 

investigate the PTR data that is incomplete or fails the automatic QC check through 

various manual, sampling, and analyzing operations. 

 Generates three levels of traffic inputs: Level 1 site specific, Level 2 clustering 

average, Level 3 state average, LTPP TPF-5(004), and the Pavement-ME defaults. 

 Offers clustering methods developed by North Carolina and Michigan DOTs, 

Kentucky Transportation Cabinet (KYTC), Truck Traffic Classification (TTC) 

method, simplified TTC approach, and flexible clustering for generating Level 2 

loading spectra inputs for the Pavement-ME based on the availability of traffic data. 

 Generates input files in the file formats that can be directly imported into the 

Pavement-ME software.

5.2 UPDATES IN PREPME

Several major functional improvements have been made in the updated PrepME software, 

including:
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5.2.1 Traffic Data Import Module

 The updated PrepME has the capability to automatically check and determine the data 

format of WIM data, and import WIM data following both the 2001 and 2013 TMG 

formats into the PrepME SQL database. 

 A new function has been developed to merge multiple classification (CLA) or Weight 

(WGT) files into a single file. Due to the characteristic of PrepME data flow, the 

speed of importing a single combined CLA or WGT file is much faster than that of 

multiple files separately. Users can find this new feature in the Tool menu. 

 Besides the detailed TMAS check report developed in the past, a summary TMAS 

quick check report is also generated during data import process. The summary TMAS 

report could help state agencies diagnose the sensor issues.

5.2.2 Traffic Data Check Module

 New functions are added to display data for multiple user-selected months. This 

feature is helpful to investigate the traffic patterns for WIM stations on low volume 

roads. 

 Several error prevention operations are added in the process of "Run Quality Control" 

in the Classification Data Check Module to prevent software crashes for some 

specific stations which have no data. 

 A function that is able to cancel users’ manual operation 

 Two changes have been made for the "Monthly Sampling" operation to allow the data 

to be classified as "accepted" after a monthly sampling operation was performed. 

 The team re-examined the data flow of the "Daily Sampling" operation. The updated 

PrepME software now only allows users to select complete weekly data to represent 

the traffic data for the month.

5.2.3 Traffic Data Output

 A function is developed to automatically compute several key traffic parameters for a 

selected PTR site, including AADTT, Trucks% in Designed Direction, Trucks% in 

Designed Lane. This function can compute AADTT in either both directions or one 

direction for Level 1 site-specific output. In addition, the updated PrepME can 

automatically determine design direction & design lane for such calculations. 

 All traffic output files generated by PrepME are re-validated with Pavement ME 

Design, since the XML data format for Pavement ME Design has been changed.

In addition, several software bugs have been fixed including:

 Previously PrepME crashes when users try to enter the traffic output dialog if either 

CLA or WGT data are available. This bug has been fixed in the most recent software. 

 Due to Google Map API changes, the previous version of PrepME software 

encounters a script error and crashes when the Google Map capability is called by the 

software. The software has been updated using the most recent Google Map API. In 

addition, if no GPS information is available for a specific PTR site, the Google Map
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will mark this site in the middle of the Pacific Ocean. In the updated PrepME, if such 

information is missing, the location is pointed to the center of the state. 

 After clicking the button "Show WIM Station" in STA Data Check Module, software 

will crash if there is no CLA and WGT data. New codes were added to (1) prevent 

software from crashing under this condition; (2) merge repeatable information in a 

STA file during the importing process; 

 In the "View Output Data" in the Traffic Output Module, the logical order among the 

radio buttons is corrected. 

 It is found that the output axle loading spectra in the previous version of the PrepME 

software were shifted by one load bin to the heavier side for all the four axle types. 

This bug has been fixed in the PrepME import module.

5.3 PREPME QC DATA CHECKS

The Traffic Data Check sub-menu is able to:

 Conduct QC check for weight data by direction and lane of traffic using data check 

algorithms defined in the TMG (Figure 5-1). Weight data check algorithms defined in 

the 2001 third edition of TMG are integrated in the PrepME software to evaluate 

weight data for class 9 vehicles. Specific weight bounds can be defined for the front 

axle and drive tandem axle weights of Class 9 trucks. In addition, the histogram plot 

of gross vehicle weights of Class 9 trucks should have two peaks, one representing 

unloaded Class 9 trucks between 28,000 and 36,000 lb (32,000 ± 4,000 lb), and the 

second peak representing loaded vehicle condition with a weigh between 72,000 and 

80,000 lb (76,000 ± 4,000 lb). 

 Provide interfaces for users to review monthly, weekly, and daily traffic data. 

 Provide four sampling and repair options to analyze and utilize incomplete (that not 

have a minimum of 12-month data) or failed data (that cannot pass the automatic 

TMG data check algorithms), including Manual Operation (Accept and Reject), 

Replacement (Copy and Paste), and Sampling Operation (Daily Sampling and 

Monthly Sampling).

o Manual Operation (Accept/Reject) allows users to review and double check 

the automated QC results. 

o Replacement (Copy and Paste) operation can be used to check the similarity 

of the data in adjacent months, opposite direction, or different lane, same 

month but different year, and then identify a suitable month which can be used 

as the “source month” to substitute the failed or missing month (the “target 

month”). 

o Daily Sampling operation can be used as a diagnostic tool to investigate the 

reason(s) for bad data that cannot pass automatic data check, and sample 

weekly data with good quality to represent this month. (Figure 5-2) 

o Monthly Sampling can be used to select twelve months of data with the 

highest data quality, either right after a WIM system calibration or any 12 

months' data based on engineering judgment.
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 Conduct QC check for classification data by direction and lane of traffic using data 

check algorithms defined in the TMG. The data check criteria includes the check of 

percentages of unclassified vehicles, class 1 vehicles, and the consistency check in the 

vehicle mix so that no significant changes are observed. The consistency check is 

executed by comparing the current truck percentages by class with the corresponding 

historical percentages. The PrepME software provides similar software interface 

(Figure 5-3), which is able to perform automatic data check, daily check, 

replacement, and sampling operations for classification data. Daily sampling function 

is illustrated in Figure 5-4.

Figure 5-1 Weight data check by direction and by lane
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Figure 5-2 Daily check and sampling

Figure 5-3 Classification data check by direction and by lane
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Figure 5-4 Classification daily data check

5.4 NEW GROUPING DEVELOPMENT IN PREPME

The existing Level 2 traffic data output for Michigan Department of Transportation (MDOT) 

in the previous PrepME software is based on (1) sensitivity of the various traffic inputs to the 

predicted pavement performance, (2) cluster analyses to group sites with similar 

characteristics for critical traffic inputs, and (3) discriminant analysis to develop a set of 

linear regression equations to select the appropriate traffic input cluster group for at a 

particular pavement design site. The independent variables for the discriminant equations 

mostly rely on the truck freight data, which may not be always available for a route.

In the current project, a simplified approach (Level 2B) is developed based on a combination 

of attributes for grouping PTR locations for different traffic inputs:

 Functional classification (Freeway vs. Non-Freeway), 

 Development type (Urban vs. Rural), 

 AADTT levels (1 “<1000”, 2 “1000-3000”, 3 “>3000”), 

 Corridors of highest significance (National, Regional and Statewide), 

 Number of lanes (2, 3 and 4), 

 Road type (divided, freeway etc.) 

 Vehicle class 9 (VC 9) distribution levels (< 45, 45-70, >70)
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The possible 2-, 3-, and 4-way combinations of the attributes are investigated in the project. 

Pairwise Euclidean distances between each sublevel combinations are calculated to identify 

the combination of the attributes that show different traffic patterns. Due to the extensive 

computing complexity required in the process, the optimal combination of the attributes has 

not been fully integrated in the software programming. Instead, only 2-way combination 

results are implemented in the updated PrepME software. Note that the traffic loading spectra 

output data are averaged based on the selected WIM sites. In addition, the attributes used in 

the site selection process are hardcoded in the software. The users cannot implement addition 

of new sites and attribute modifications in the software currently. 

Figure 5-5 shows the new software interface. Users should select any two attributes (out of 

the seven) to generate output averages for various traffic parameters. The steps to export 

desired traffic inputs for the Pavement-ME design are as follows:

1. Traffic data preparation: Follow the Prep-ME User’s Guide to import traffic data and 

perform necessary quality checks. 

2. Export traffic data setup: Provide the “Project Name” and the directory for data output 

using the “Export Data To…” button. The GPS coordinates are optional, which are only 

used for the Google Map utility. Subsequently, the “MIDOT Method 2” should be 

selected to use the simplified Level 2B approach. In the popped-up attribute selection 

window, users can select two of the attributes for their design. If a different combination 

is desired, the “Reset Selection” button can clear the previous selection of attributes so 

that new combinations can be selected. 

3. Export traffic data for Pavement ME Design: Click the “OK” button after the attribute 

combination is set and the traffic data is ready for review and export.

Figure 5-5 New developed Level 2B two-way combination grouping approach
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CHAPTER 6 - CONCLUSIONS & RECOMMENDATIONS

Based on the analyses of traffic data collected during the years 2011 to 2015, the following 

conclusions and recommendations are drawn for traffic inputs for the Pavement-ME analysis 

and design in the State of Michigan.

6.1 CONCLUSIONS

The following hierarchical traffic inputs can be used in the Pavement-ME:

 Level 1 – Convert WIM and classification site-specific data to the Pavement-ME 

format using PrepME. 

 Level 2 – Utilize groups based on the road attributes with similar traffic 

characteristics. The group traffic characteristics were averaged to create Level 2 

traffic inputs. 

 Level 3 – Average traffic characteristics from all PTR sites were used to generate for 

freeway and non-freeway Level 3 data.

6.1.1 Findings based on the Cluster Analysis and Traditional Approaches

The development of Level 2A inputs established the following findings:

 Vehicle class distribution (VCD) clustering identified five specific traffic patterns 

each distinguished by the proportions of VC5 and VC9. Sites in cluster 1 have 

percentage VC9 trucks in the ranges of 45 to 70 while the VC5 truck percentage was 

in the range of 15 to 25. Cluster 2 contained a majority of sites with percentage VC9 

trucks less 45 while the VC5 truck percentage was in the range of 20 to 30. Cluster 3 

has sites that have slightly higher percentage of VC5 trucks than VC9 trucks. Sites in 

cluster 4 have the highest percentage of VC9 trucks (above 75) with very low 

percentage of VC5 trucks (below 10). Sites in cluster 5 have percentage of VC9 

trucks between 55 and 70 with percentage of VC5 trucks between 10 and 20. 

 Monthly adjustment factors (MAF) clustering resulted in four clusters based on VC5. 

Cluster 1 exhibits reasonable seasonal variability, having MAF close to 1.4 during 

summer months with lower values in winter. Cluster 2 depicts very little seasonal 

variability with MAF close to 1. Cluster 3 displays higher MAF in summer and fall, 

with much lower MAF in winter and spring. Sites in cluster 4 also have higher MAF 

in summer and fall and are mostly located on north-south routes such as I-75 and US-

127. Cluster analysis based on VC9 resulted in five clusters. Almost all the sites in all 

the clusters have no seasonal variability between months. Since, VC9 trucks are used 

for long haul throughout the year, a uniform presence of such trucks is expected on all 

the sites. 

 Hourly distribution factors (HDF) were grouped into five clusters. Cluster 1 contains 

heavier evening proportions of trucks. Cluster 2 has similar percentage of trucks as 

sites in cluster 1, but on average, shifts left by an hour (earlier). Cluster 3 average has 
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roughly a 1-2% lower truck percentage between the hours of 7:00 am and 4:00 pm 

than either clusters 1 or 2. Sites in cluster 4 have the highest HDF during 8 am to 12 

noon of all clusters. Sites in cluster 5 have the flattest curve among all the clusters 

suggesting minimum hourly variations for long-haul trucks. 

 Single axle load spectra (SALS) were grouped into four clusters based on VC5 trucks. 

For all the sites in the clusters the first peak occurs at approximately 4 to 6 kips while 

the second peak occurs at 8 to 10 kips. Cluster 1 has almost equal proportion of axles 

in the 4-6 kip range and the 8-10 kip range. Cluster 2 has higher proportion of 4-6 kip 

axles than 8-10 kip axles. Cluster 3 has only one site (US-2) in the Upper Peninsula 

and the pattern is unique to that site. Cluster 4 has sites with higher proportion of 

axles in the 8-10 kip range than the 4-6 kip range. 

 Tandem axle load spectra (TALS) based on VC9 resulted in five clusters. The two 

peaks in the clusters correspond to unloaded (9-14 kips) and loaded (30-33 kips) 

trucks. Clusters 1, 3 and 4 have more light axles than heavy, whereas Clusters 2 and 

Cluster 5 have heavier tandem axles. 

 Tridem axle load spectra (TRALS) based on VC13 formed six clusters. The general 

trend of the tridem axle clusters show a large proportion of light axles around 12 kips 

followed by a peak value around 40-45 kips. 

 Quad axle load spectra (QALS) based on VC13 resulted in 3 clusters. Peak values for 

the quad axle load spectra occur at the 18-24 kips, 45-60 kip ranges.

The development of Level 2B inputs established the following findings:

 It was anticipated that the MDOT will know the AADTT at a site (i.e., from historical 

traffic data or short-term counts). Therefore, AADTT was grouped into low, medium, 

and high traffic volume. Low was under 1000 AADTT, medium was from 1000 to 

3000 AADTT, and high was greater than 3000 AADTT for the design lane in one 

direction. Fourteen sites had low AADTT, eighteen sites had medium AADTT, and 

the remaining nine had high AADTT. Note that the AADTT brackets were 

determined based on the distribution of the latest AADTT levels from the 41 PTR 

sites. 

 For VCD, the attributes of VCD level and development type (urban vs. rural) resulted 

in six groups. Three distinct patterns with varying levels of VC9 irrespective of the 

development type were observed. All the sites in high VC9 groups are located on the 

interstates while most of the sites in low VC9 groups are located on state routes. Sites 

in the medium VC9 groups have a mix of both intestates and state routes in rural and 

urban areas. 

 For MAF, the attributes of commercial AADT and development type resulted in six 

groups. Almost all the groups have similar MAF patterns for VC5 except for sites 

with low AADTT in the rural areas suggesting seasonal traffic patterns. No 

differences in MAF for VC9 trucks were found between the groups and are always 

close to 1. 

 For HDF, the attributes of VCD level and development type resulted in six groups. 

The sites having low VC9 levels in the urban areas have the highest peak among all 

other groups between 8:00 am and 4:00 pm suggesting local traffic patterns. Sites 

having high VC9 levels have the flattest peaks in both urban and rural areas 
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suggesting long haul traffic patterns.  All the sites in high VC9 groups are on 

interstate routes. 

 For SALS, the attributes of COHS and development type resulted in six groups. For 

all the sites in different groups, the first peak occurs at approximately 4-6 kips while 

the second peak occurs at 8-10 kips. Road groups in the urban areas have almost 

equal proportion of axles in the 4-6 kip range and the 8-10 kip range while the sites in 

the rural areas have higher proportion of 4-6 kip axles than 8-10 kip axles. The road 

group of regional corridor in the urban area has only one site on US-2 with a unique 

loading pattern. 

 For TALS, the attributes of number of lanes and development type resulted in five 

groups. The two peaks seem to correspond to unloaded (9-14 kips) and loaded (30-33 

kips) tandem axles. Other characteristics could not be established for the groups as 

they have varying functional classifications and AADTT levels and also due to the 

fact that some groups only have one site. 

 For TRALS, the attributes of COHS and development type resulted in six groups. The 

general trend of the tridem axle groups appears to be a large proportion of light axles 

around 12 kips followed by a peak value around 40-45 kips. All the sites in the 

national corridors are located on interstates while the sites on regional and statewide 

corridors are on state routes with varying AADTT levels irrespective of the 

development type. 

 For QALS, the attributes of COHS and development type resulted in six groups. 

Again, all the sites in national corridors are on the interstates while the sites on 

regional and statewide corridors are on state routes with varying AADTT levels 

irrespective of the development type. 

6.1.2 Significant Traffic Input Levels

For pavement design, it is recommended that site specific data (Level 1) be used if available. 

For sites with no site-specific data, it is necessary to know whether Level 2 or Level 3 data 

are acceptable for design purposes. To investigate the impact of traffic input levels on 

predicted pavement performance for flexible and rigid pavements, the Pavement-ME was 

used. The results of the sensitivity analyses were used to establish the appropriate traffic 

input levels. Such analyses were performed on the absolute life differences (|LifeLevel 1 - 

LifeLevel X|) to detect the differences between the clusters or groups for each traffic input.

The sensitivity of inputs at Levels 2 and 3 was determined using statistical and practical 

significance criteria. The next step was to identify if there are any differences between 

predicted lives for Levels 2A and 2B. If there are no differences between the Levels 2A and 

2B, then Level 2B can be used since it will simplify the input selection process. Also, the 

number of under- and over-designed WIM sites due to the use Levels 2A and 2B inputs were 

determined. A pavement at a location will be over-designed when the difference in design 

lives (LifeLevel 1 - LifeLevel x) is positive and under-designed when the difference (LifeLevel 1 - 

LifeLevel x) is negative. While a positive life difference would suggest increasing the 

thicknesses making the project over-designed, a negative life difference will require to 

reduce the thicknesses making the project under-designed relative to Level 1. If there were 

statistically significant differences, either Level 2A or 2B was selected for that traffic input 
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after careful evaluation of the average design life differences. If there were no differences 

between Levels 2A and 2B, comparisons were made between Levels 2A and 3A or 2B and 

3A to see if Level 3A would suffice for pavement designs. Again, if there are no differences 

between Levels 2 and 3A, comparisons were made between Levels 3A and 3B to see if Level 

3B would suffice for pavement designs. Levels 2A, 2B, 3A and 3B traffic inputs can be 

found in Appendix E. The following is the summary of findings:

 VCD significantly impacts predicted rigid and flexible pavement performance. In 

addition there is a statistical difference between Levels 2A and 2B for rutting only in 

flexible pavements. The number of under designed sites are higher for Level 2A 

compared to Level 2B. Thus, VCD groups (Level 2B) are suggested for use in 

flexible and rigid pavement design.  

 MAF have negligible impact on predicted rigid and flexible pavement performance. 

No statistical differences in design lives between Level 2A clusters or 2B road groups 

were observed. Also, there are no statistically significant differences between Levels 

2B and 3A. Since there are statistically significant differences between Levels 3A and 

3B, Level 3A inputs are recommended for MAF for both flexible and rigid pavements  

 HDF significantly impacts rigid pavement performance. Level 2A is slightly better 

with the number of undersigned sites for transverse cracking than Level 2B. 

However, due to relatively high misclassification rates of the classification models, 

practically insignificant difference between Levels 2A and 2B, and ease of use, group 

average (Level 2B) HDFs should be utilized for rigid pavement design.  

 AGPV had a negligible impact on predicted rigid and flexible pavement performance. 

Therefore, it is suggested that statewide averages (Level 3B) be used for this traffic 

input. 

 Single axle load spectra have a significant effect on predicted flexible pavement 

performance. Cluster (2A) and group (2B) averages produced comparable results. 

Also no significant difference was detected between Levels 2B and 3A. Therefore, it 

is recommended that statewide averages (Level 3A) be used for this traffic input. 

 Tandem axle load significantly impacted rigid and flexible pavement performance. 

Therefore, group averages (Level 2B) are suggested for both rigid and flexible 

pavement designs. 

 Tridem and quad axle load spectra do not have a significant impact on rigid and 

flexible pavement performance. Consequently, statewide average tridem and quad 

axle load spectra (Level 3A) can be used for this traffic input. 

 The Pavement-ME defaults traffic inputs don’t accurately reflect the local traffic 

conditions in the state of Michigan. In general, statewide or cluster averages produced 

performance lives that were closer to the site-specific values than the Pavement-ME 

defaults. Consequently, the Pavement-ME defaults are not recommended for use in 

the state of Michigan.
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The summary of the above findings is presented below:

Traffic Characteristic 

Impact on Pavement Performance
Suggested Input Levels 

(when Level I is unavailable)

Rigid Pavement
Flexible 

Pavement
Rigid Pavement Flexible Pavement

VCD Moderate Moderate Level 2B

HDF Moderate - Level 2B -

MAF Negligible Level 3A

AGPV Negligible Level 3B

Single ALS Negligible Moderate Level 3A

Tandem ALS Moderate Moderate Level 2B

Tridem ALS Negligible Negligible Level 3A

Quad ALS Negligible Negligible Level 3A
Note: All traffic inputs are delivered as a separate excel file. MDOT can choose the recommended inputs from 

the excel file.

6.1.3 Assigning a Site to a Cluster or a Group

The above table presents the summary of suggested traffic levels for each traffic input. For 

the traffic inputs where site-specific (Level 1) data or only statewide values (Levels 3A or 

3B) need to be used, selection of the appropriate traffic input is obvious. For traffic inputs 

where Level 2B are suggested, the following road attributes can be used to obtain the inputs:

 Vehicle class distribution (VCD) — VC9 distribution (< 45%, 45 – 70%, >70%) and 

development type (Urban vs. Rural) 

 Hourly distribution factor (HDF) — VC9 distribution (< 45%, 45 – 70%, >70%) and 

development type (Urban vs. Rural) 

 Tandem Axle Load Spectra (TALS) — Number of lanes (2, 3 and 4) and 

development type (Urban vs. Rural)

6.1.4 General Findings

Additionally, the following observations were made based on the analyses of the traffic 

inputs:

 In general, insignificant seasonal (month to month) variations existed in axle load 

spectra for the most vehicle classes except the vehicle classes (VC4, VC7, VC8, 

VC11, and VC12) that constitute a very low percentage of the traffic volume and are 

on roads with low AADTT. 

 The impact of directional difference in axle load spectra for most vehicle classes is 

negligible. Only VC10 and VC13 exhibited directional difference. This is most likely 

local nature of these specific VC trips (for e.g., traveling to and from a logging site or 

gravel pit). This is an important observation as it substantiates the need to analyze 

only a single direction in the cases where VC10 and VC13 are predominant. This 
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difference should be observed for each PTR location where directional difference for 

VC13 is more than 5%.   

 The single axle load distribution depends on the percentages of VC5 and VC9 in the 

traffic stream. The sites with higher proportions of VC5 peak at 4-8 kips while sites 

with higher proportions VC9 peak at 8-10 kips. 

 The tandem axle load distributions are mostly dependent on the axle load spectra of 

VC9. 

 The tridem and quad axle load spectra are a function of VC7, VC10 and VC13.

6.2 RECOMMENDATIONS

It is recommended, wherever possible, to expand the geographic coverage of traffic data in 

Michigan. When a new PTR site needs to be installed, it should be located in areas where 

limited traffic data are available. Short duration and continuous counts should be shared 

between agencies to ensure wider and recurrent data collection coverage. Effective 

communication between traffic data collection personnel and pavement design engineers is 

recommended for addressing the traffic input requirement for the Pavement-ME. 

Additionally, the following specific traffic data collection efforts should be considered as 

recommended by the Traffic Monitoring Guide (TMG):

 The short duration volume coverage count program should provide comprehensive 

coverage across the roadway infrastructure on a cycle of 6 years. Short duration 

classification counts should account for at least 25-30% of all volume counts being 

conducted (i.e., at all PTR locations) wherever possible. In addition, at least one 

vehicle classification count should be made on each route annually. 

 At least six continuous vehicle classification PTR be established for each road group. 

Continuous counts should be placed on different functional classes and different 

geographic regions within the state. Emphasis should be placed on roads that are 

primarily local or long hauls. When new sites are added, the data should be placed 

into the appropriate existing road groups.  

 A minimum of six WIM should be monitored within a group, with at least one of the 

WIM sites operating continuously and recording two or more lanes of traffic. The 

amount of permanent WIM stations and discontinuous portable systems is a function 

of the number of groups, the accuracy at which the measured weights are taken, and 

the budget of the State agency.  

With proper coverage of existing groups and a gradual expansion into unmonitored areas 

within the State through installation of permanent devices, the data collection program could 

be more robust. In addition to above mentioned general suggestions, based on the results of 

this study following are the specific recommendations to improve traffic data collection to 

facilitate the use of the Pavement-ME design process in the State of Michigan:

1. The attributes selected for the road group development for different traffic inputs 

were determined based on the traffic data collected at 41 WIM sites distributed across 

the State. In addition, most of the traffic data were collected between years 2011 to 
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2015. However, there will be a need to revise these groups for Level 2B traffic inputs 

if the following updates or changes are anticipated:

a. Addition of new classification and WIM sites at different geographical 

locations or change in the status of existing site (e.g., down- or up-grading 

from WIM to classification or vice versa). 

b. Significant change in the land use (for e.g., industrial development or 

commercial zoning) in the vicinity of the existing WIM locations. 

c. Change in the WIM technology for a number of locations. For example if less 

accurate piezo sensors are replaced with more accurate quartz or bending plate 

sensors. The accuracy and bias in WIM sensor will affect the axle load spectra 

which might influence the selection of attributes for Level 2B inputs.

If MDOT anticipates the above-mentioned updates or changes in the near future (e.g., 

5 or 10 years), then there will be a need to re-evaluate the attributes or the group 

averages for all traffic inputs.

2. For a few sites, the traffic patterns over time were compared. Some changes in truck 

traffic distribution were observed for PTR locations with one-way AADTT < 1000. 

However, for sites having one-way AADTT > 1000, the truck traffic and tandem axle 

distributions did not vary substantially for the last 5 years (2011 to 2015). If changes 

are observed in traffic patterns (classifications and loadings) at a PTR location for at 

least 3 years, then the new 3 years traffic data should be used to update the traffic 

inputs. Otherwise, the new data should be combined with the available traffic 

database. These changes in traffic patterns include any of the following at a PTR 

location:

a. A 10% change in VC9 and VC10,  

b. An 8% change in VC11, and 

c. A 5% change in VC13  

3. The existing PTR locations were reviewed and the following specific WIM additions 

are recommended for the various regions in the State:

a. Superior Region: 

 Because of the presence of heavy to very heavy axle loads, an additional 

WIM site along M28 between Ewen and Kenton. 

 To capture interstate truck traffic (between Michigan and Wisconsin), an 

addition WIM site should be considered on US2 west of Watersmeet. 

b. North Region: 

 The current WIM site distribution seems adequate with the addition of 

WIM site 3069 to cover the west side of the region. 

 An additional WIM sites should be considered on the eastern side along 

M-32 if land use demands change in future. 

c. Grand Region:
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 The axle loading analysis revealed light to medium axle loadings in this 

region. Therefore, the current WIM site distribution seems adequate at this 

time. 

d. Bay Region: 

 This region also contains light to medium axle loadings. The current WIM 

site distribution seems adequate at this time. 

e. Metro Region: 

 Additional WIM can be considered on I-75 between Flint and Auburn 

Hills. No PTR is located on this part of I-75 with anticipated commercial 

truck traffic. 

f. University Region: 

 Based on the new axle loading data, the current WIM site distribution 

seems adequate at this time. 

g. Southwest Region: 

 Additional WIM site is recommended in future on US31 near Sodus 

Township. This location will capture traffic coming north from I-90.

4. It is strongly recommended to continue collecting short-term (48 hours) counts to 

obtain VCD data, especially for locations on interstate highways with higher 

frequency of VC13. The VCD obtained using short-term count can be directly used in 

the Pavement-ME as Level 1 input instead of Level 2B VCD input.



114

REFERENCES 

Chapter 1

1. Zhang, Z., J. Leidy, I. Kawa, and W. Hudson, "Impact of changing traffic 

characteristics and environmental conditions on flexible pavements," Transportation 

Research Record: Journal of the Transportation Research Board, pp. 125-131, 2000. 

2. Carvalho, R. and C. Schwartz, "Comparisons of flexible pavement designs: AASHTO 

empirical versus NCHRP Project 1-37A mechanistic-empirical," Transportation 

Research Record: Journal of the Transportation Research Board, pp. 167-174, 2006. 

3. NCHRP, "Guide for Mechanistic-Empirical Design of New and Rehabilitated 

Pavement Structures.," Washington D.C NCHRP Project 1-37A, 2004. 

4. Buch, N., S. W. Haider, J. Brown, and K. Chatti, "Characterization of Truck Traffic 

in Michigan for the New Mechanistic-Empirical Pavement Design Guide " Michigan 

Department of Transportation, Lansing, MI Report # RC-1537, 2009. 

5. NCHRP Project 1-37A, "Appendix AA: Traffic Loading," ARA, inc., ERES division, 

505 West University Avenue, Champaign, Illinois 61820, 2004 Final Report: Guide 

for Mechanistic-Empirical Design of New and Rehabilitated Pavement Structures, 

2004. 

6. Haider, S. W., N. Buch, K. Chatti, and J. Brown, "Development of Traffic Inputs for 

Mechanistic-Empirical Pavement Design Guide in Michigan," Transportation 

Research Record, vol. 2256, pp. 179-190, 2011. 

7. FHWA, "Traffic Monitoring Guide," Washington, DC 2016. 

8. Selezneva, O., M. Ayres, M. Hallenbeck, A. Ramachandran, H. Shirazi, and H. Von 

Quintus, "MEPDG Traffic Loading Defaults Derived from LTPP Traffic Pooled Fund 

Study," Federal Highway Administration, Final Report, FHWA, In the publication, 

2016. 

9. Selezneva, O. I., and M. Hallenbeck, "Long-Term Pavement Performance Pavement 

Loading User Guide (LTPP PLUG)," Federal Highway Administration, FHWA-

HRT-13-089, 2013.

Chapter 2

1. NCHRP, "Guide for Mechanistic-Empirical Design of New and Rehabilitated 

Pavement Structures.," Washington D.C NCHRP Project 1-37A, 2004. 

2. Olga, S. and V. Q. Harold, "Traffic Load Spectra for Implementing and Using the 

Mechanistic-Empirical Pavement Design Guide in Georgia,"  FHWA-GA-14-1009, 

2014. 

3. Tran, N. and K. Hall, "Development and significance of statewide volume adjustment 

factors in mechanistic-empirical pavement design guide," Transportation Research 

Record: Journal of the Transportation Research Board, pp. 97-105, 2007. 

4. Lu, Q., Y. Zhang, and J. Harvey, "Estimation of truck traffic inputs for mechanistic-

empirical pavement design in California," Transportation Research Record: Journal 

of the Transportation Research Board, pp. 62-72, 2009. 

5. FHWA, "Traffic Monitoring Guide," Washington, DC 2016.



115

6. Lu, Q. and J. Harvey, "Characterization of truck traffic in California for mechanistic-

empirical design," Transportation Research Record: Journal of the Transportation 

Research Board, pp. 61-72, 2006. 

7. On Tam, W. and H. Von Quintus, "Use of long-term pavement performance data to 

develop traffic defaults in support of mechanistic-empirical pavement design 

procedures," Transportation Research Record: Journal of the Transportation 

Research Board, pp. 176-182, 2003. 

8. NCHRP Project 1-37A, "Appendix AA: Traffic Loading," ARA, inc., ERES division, 

505 West University Avenue, Champaign, Illinois 61820, 2004 Final Report: Guide 

for Mechanistic-Empirical Design of New and Rehabilitated Pavement Structures, 

2004. 

9. NCHRP, "NCHRP Report 538 : Traffic Data Collection, Analysis, and Forecasting 

for Mechanistic Pavement Design," Transportation Research Board, Washington, 

D.C. 2005. 

10. Selezneva, O., M. Ayres, M. Hallenbeck, A. Ramachandran, H. Shirazi, and H. Von 

Quintus, "MEPDG Traffic Loading Defaults Derived from LTPP Traffic Pooled Fund 

Study," Federal Highway Administration, Final Report, FHWA, In publication, 2016. 

11. Darter, M., L. Titus-Glover, and D. Wolf, "Development of a Traffic Data Input 

System in Arizona for the MEPDG," Arizona Department of Transportation, Phoenix, 

AZ FHWA-AZ-13-672, 2013. 

12. Turochy, R. E., D. H. Timm, and D. Mai, "Development of Alabama Traffic Factors 

for use in Mechanistic-Empirical Pavement Design,"  FHWA/ALDOT 930-793, 

2015. 

13. Buch, N., S. W. Haider, J. Brown, and K. Chatti, "Characterization of Truck Traffic 

in Michigan for the New Mechanistic Empirical Pavement Design Guide " Michigan 

Department of Transportation, Lansing, MI Report # RC-1537, 2009. 

14. Wang, K. C., Q. Li, K. D. Hall, V. Nguyen, and D. X. Xiao, "Development of truck 

loading groups for the mechanistic-empirical pavement design guide," Journal of 

Transportation Engineering, vol. 137, pp. 855-862, 2011. 

15. Agresti, A. and M. Kateri, Categorical data analysis: Springer, 2011. 

16. Mallela, J., L. Titus-Glover, S. Sadasivam, B. Bhattacharya, M. Darter, and H. Von 

Quintus, "Implementation of the AASHTO Mechanistic-empirical Pavement Design 

Guide for Colorado,"  CDOT-2013-4, 2013. 

17. Stone, J. R., Y. R. Kim, G. F. List, W. Rasdorf, F. Sayyady, F. Jadoun, and A. N. 

Ramachandran, "Development of Traffic Data Input Resources for the Mechanistic 

Empirical Pavement Design Process,"  FHWA/NC/2008-11, 2011. 

18. Sayyady, F., J. Stone, G. List, F. Jadoun, Y. Kim, and S. Sajjadi, "Axle load 

distribution for mechanistic-empirical pavement design in north carolina: 

Multidimensional clustering approach and decision tree development," 

Transportation Research Record: Journal of the Transportation Research Board, pp. 

159-168, 2011. 

19. El-Badawy, S. M., F. M. Bayomy, and S. W. Fugit, "Traffic characteristics and their 

impact on pavement performance for the implementation of the mechanistic-

empirical pavement design guide in Idaho," International Journal of Pavement 

Research and Technology, vol. 5, pp. 386-394, 2012.



116

Chapter 3

1. Wang, K. C., Q. J. Li, V. Nguyen, M. Moravec, and D. Zhang, "Prep-ME: A multi-

agency effort to prepare data for DARWin-ME," in Airfield and Highway Pavement 

2013: Sustainable and Efficient Pavements, 2013, pp. 516-527. 

2. Turochy, R. E., D. H. Timm, and D. Mai, "Development of Alabama Traffic Factors 

for use in Mechanistic-Empirical Pavement Design,"  FHWA/ALDOT 930-793, 

2015. 

3. FHWA, "Traffic Monitoring Guide," Washington, DC 2016. 

4. Milligan, G. W., "Clustering Validation: Results and Implications for Applied 

Analyses," in Clustering and Classification: World Scientific, 1996, pp. 341-375. 

5. Tan, P. N., M. Steinbach, and V. Kumar, Introduction to Data Mining: Pearson, 2013. 

6. Mooi, E. and M. Sarstedt, "Cluster analysis," in A Concise Guide to Market Research: 

Springer, 2010, pp. 237-284. 

7. Everitt, B. S., S. Landau, M. Leese, and D. Stahl, "Cluster analysis: Wiley series in 

probability and statistics," Chichester: Wiley, 2011. 

8. Baulieu, F., "A classification of presence/absence based dissimilarity coefficients," 

Journal of Classification, vol. 6, pp. 233-246, 1989. 

9. Cheetham, A. H. and J. E. Hazel, "Binary (presence-absence) similarity coefficients," 

Journal of Paleontology, pp. 1130-1136, 1969. 

10. Gower, J. C. and P. Legendre, "Metric and Euclidean properties of dissimilarity 

coefficients," Journal of classification, vol. 3, pp. 5-48, 1986. 

11. Hubalek, Z., "Coefficients of association and similarity, based on binary (presence‐

absence) data: an evaluation," Biological Reviews, vol. 57, pp. 669-689, 1982. 

12. Yim, O. and K. T. Ramdeen, "Hierarchical cluster analysis: comparison of three 

linkage measures and application to psychological data," Quant. Methods. Psychol, 

vol. 11, pp. 8-21, 2015. 

13. Steinbach, M., L. Ertöz, and V. Kumar, "The Challenges of Clustering High 

Dimensional Data," in New directions in Statistical Physics: Springer, 2004, pp. 273-

309. 

14. Ferreira, L. and D. B. Hitchcock, "A comparison of hierarchical methods for 

clustering functional data," Communications in Statistics-Simulation and 

Computation, vol. 38, pp. 1925-1949, 2009. 

15. Milligan, G. W. and M. C. Cooper, "An examination of procedures for determining 

the number of clusters in a data set," Psychometrika, vol. 50, pp. 159-179, 1985. 

16. Caliński, T. and J. Harabasz, "A dendrite method for cluster analysis," 

Communications in Statistics-theory and Methods, vol. 3, pp. 1-27, 1974. 

17. Matlab, 2016. 

18. Tibshirani, R., G. Walther, and T. Hastie, "Estimating the number of clusters in a data 

set via the gap statistic," Journal of the Royal Statistical Society: Series B (Statistical 

Methodology), vol. 63, pp. 411-423, 2001. 

19. Hallenbeck, M., M. Rice, B. Smith, C. Cornell-Martinez, and J. Wilkinson, "Vehicle 

volume distributions by classification,"  1997. 

20. Schneider, W. H. and I. Tsapakis, "Review of Traffic Monitoring Factor Groupings 

and the Determination of Seasonal Adjustment Factors for Cars and Trucks," 

University of Akron, Department of Civil Engineering 2009.



117

Chapter 4

1. Haider, S. W., G. Musunuru, M. E. Kutay, M. A. Lanotte, and N. Buch, 

"Recalibration of Mechanistic-Empirical Rigid Pavement Performance Models and 

Evaluation of Flexible Pavement Thermal Cracking Model,"  Report Number: SPR-

1668, 2017. 

2. Haider, S. W., N. Buch, W. Brink, K. Chatti, and G. Baladi, "Preparation for 

Implementation of the Mechanistic-Empirical Pavement Design Guide in Michigan 

Part 3: Local Calibration and Validation of the Pavement-ME Performance Models," 

Rep. No. RC-1595, Michigan State Univ., East Lansing, MI, 2014. 

3. Freund, R. J., W. J. Wilson, and D. L. Mohr, Statistical Methods, 3rd ed. London, 

UK: Academic Press, An Imprint of Elsevier, 2010. 

4. Tan, P. N., M. Steinbach, and V. Kumar, Introduction to Data Mining: Pearson, 2013.


	Roman Pages
	Updated Analysis of Michigan Traffic Inputs  for Pavement-ME Design
	EXECUTIVE SUMMARY

	Chapter 1 - Introduction
	CHAPTER 1 - INTRODUCTION
	1.1 PROBLEM STATEMENT AND BACKGROUND
	1.2 RESEARCH OBJECTIVES
	1.3 RESEARCH PLAN
	Task 1: Literature Review
	Task 2: Review of the Existing Practices
	Task 3: Methodology for Clustering
	Task 4: Generation of New Clusters for Level 2 Data
	Task 5: Significant Traffic Inputs
	Task 6: Evaluation of PrepME
	Task 7: Data Collection Recommendations
	Task 8: Final Report and Technology Transfer

	1.4 OUTLINE OF REPORT


	Chapter 2 - Literature Review
	CHAPTER 2 - LITERATURE REVIEW
	2.1 PAVEMENT-ME TRAFFIC INPUTS
	2.1.1 Directional distribution factor (DDF)
	2.1.2 Lane distribution factor (LDF)
	2.1.3 Axles per truck class
	2.1.4 Axle and tire spacing
	2.1.5 Tire pressure
	2.1.6 Traffic growth
	2.1.7 Operational speed
	2.1.8 Lateral Wander
	2.1.9 Monthly adjustment factor (MAF)
	2.1.10 Hourly distribution factor (HDF)
	2.1.11 Vehicle class distribution (VCD)
	2.1.12 Axle load spectra (ALS)

	2.2 A REVIEW OF PREVIOUS STUDIES
	2.2.1 National Studies
	2.2.1.1 NCHRP 1-37A Study
	2.2.1.2 Federal Traffic Monitoring Guidelines
	2.2.1.3 NCHRP 1-39 Guidelines
	2.2.1.4 LTPP Traffic Pooled-Fund Study

	2.2.2 Other States
	2.2.2.1 Arizona
	2.2.2.2 Alabama
	2.2.2.3 Arkansas
	2.2.2.4 Colorado
	2.2.2.5 North Carolina
	2.2.2.6  New York
	2.2.2.7 Georgia
	2.2.2.8 Idaho


	2.3 REVIEW OF EXISTING PRACTICES IN MICHIGAN
	2.3.1 Potential Areas of Improvement in the Current Practices
	2.3.2 Recommended Improvements

	2.4 METHODOLGIES FOR DEVELOPING TRAFFIC INPUTS IN MICHIGAN
	2.4.1 Improved Existing Methodology
	2.4.2 Alternative Simplified Methodology

	2.5 SUMMARY


	Chapter 3 - Development of Traffic Inputs
	CHAPTER 3 - DEVELOPMENT OF TRAFFIC INPUTS
	3.2 GENERATION OF TRAFFIC INPUTS
	3.2.1 Cluster Analyses
	3.2.1.1 K-means
	3.2.1.2 Hierarchical Clustering
	Single Linkage Method
	Complete Linkage Method
	Group Average Method
	Ward’s Method

	3.2.1.3 Choosing the Optimal Number of Clusters

	3.2.2 Traditional Approaches

	3.3 SUMMARY


	Chapter 4 - Significant Traffic Inputs
	CHAPTER 4 - Significant traffic inputs
	4.1 SENSITIVITY ANALYSES – OPTION 1
	4.1.1 Level 2A Sensitivity Analyses
	4.1.2 Level 2B Sensitivity Analyses
	4.1.3 Level 3A Sensitivity Analyses
	4.1.4 Choosing the Appropriate Traffic Input Level
	4.1.4.1 Vehicle class distribution
	4.1.4.2 Hourly distribution factors
	4.1.4.3 Monthly adjustment factors
	4.1.4.4 Axle load spectra


	4.2 SENSITIVITY ANALYSES – OPTION 2
	4.2.1 Level 2A Sensitivity Analyses
	4.2.1.1 Vehicle Class Distribution
	4.2.1.2 Monthly Adjustment Factors (MAF)
	4.2.1.3 Hourly Distribution Factors (HDF)
	4.2.1.4 Axle Load Spectra (ALS)

	4.2.2 Level 2B Sensitivity Analyses
	4.2.2.1 Vehicle Class Distribution
	4.2.2.2 Monthly Adjustment Factors (MAF)
	4.2.2.3 Hourly Distribution Factors (HDF)
	4.2.2.4 Axle Load Spectra (ALS)


	4.3 CLUSTER ASSIGNMENT METHODOLOGY
	4.4 SUMMARY


	Chapter 5 - Prep-ME Evaluation
	CHAPTER 5 - PREPME EVALUATION
	5.1 BACKGROUND
	5.2 UPDATES IN PREPME
	5.2.1 Traffic Data Import Module
	5.2.2 Traffic Data Check Module
	5.2.3 Traffic Data Output

	5.3 PREPME QC DATA CHECKS
	5.4 NEW GROUPING DEVELOPMENT IN PREPME


	Chapter 6 - Conclusions & Recommendations
	CHAPTER 6 - CONCLUSIONS & RECOMMENDATIONS
	6.1 CONCLUSIONS
	6.1.1 Findings based on the Cluster Analysis and Traditional Approaches
	6.1.2 Significant Traffic Input Levels
	6.1.3 Assigning a Site to a Cluster or a Group
	6.1.4 General Findings

	6.2 RECOMMENDATIONS


	REFERENCES
	Roman Pages.pdf
	Updated Analysis of Michigan Traffic Inputs  for Pavement-ME Design
	EXECUTIVE SUMMARY




Accessibility Report


		Filename: 

		SPR-1678_-_Final_Report_635198_7_SM.pdf




		Report created by: 

		

		Organization: 

		




[Enter personal and organization information through the Preferences > Identity dialog.]


Summary


The checker found problems which may prevent the document from being fully accessible.


		Needs manual check: 0

		Passed manually: 2

		Failed manually: 0

		Skipped: 0

		Passed: 29

		Failed: 1




Detailed Report


		Document



		Rule Name		Status		Description

		Accessibility permission flag		Passed		Accessibility permission flag must be set

		Image-only PDF		Passed		Document is not image-only PDF

		Tagged PDF		Passed		Document is tagged PDF

		Logical Reading Order		Passed manually		Document structure provides a logical reading order

		Primary language		Passed		Text language is specified

		Title		Passed		Document title is showing in title bar

		Bookmarks		Passed		Bookmarks are present in large documents

		Color contrast		Passed manually		Document has appropriate color contrast

		Page Content



		Rule Name		Status		Description

		Tagged content		Passed		All page content is tagged

		Tagged annotations		Passed		All annotations are tagged

		Tab order		Passed		Tab order is consistent with structure order

		Character encoding		Passed		Reliable character encoding is provided

		Tagged multimedia		Passed		All multimedia objects are tagged

		Screen flicker		Passed		Page will not cause screen flicker

		Scripts		Passed		No inaccessible scripts

		Timed responses		Passed		Page does not require timed responses

		Navigation links		Passed		Navigation links are not repetitive

		Forms



		Rule Name		Status		Description

		Tagged form fields		Passed		All form fields are tagged

		Field descriptions		Passed		All form fields have description

		Alternate Text



		Rule Name		Status		Description

		Figures alternate text		Passed		Figures require alternate text

		Nested alternate text		Passed		Alternate text that will never be read

		Associated with content		Passed		Alternate text must be associated with some content

		Hides annotation		Passed		Alternate text should not hide annotation

		Other elements alternate text		Failed		Other elements that require alternate text

		Tables



		Rule Name		Status		Description

		Rows		Passed		TR must be a child of Table, THead, TBody, or TFoot

		TH and TD		Passed		TH and TD must be children of TR

		Headers		Passed		Tables should have headers

		Regularity		Passed		Tables must contain the same number of columns in each row and rows in each column

		Summary		Passed		Tables must have a summary

		Lists



		Rule Name		Status		Description

		List items		Passed		LI must be a child of L

		Lbl and LBody		Passed		Lbl and LBody must be children of LI

		Headings



		Rule Name		Status		Description

		Appropriate nesting		Passed		Appropriate nesting






Back to Top


